Directional color routing assisted by switchable Fano resonance in bimetallic metagrating

Author:

Liu Feifei12ORCID,Wang Meng23,Zhang Xinping2ORCID

Affiliation:

1. College Physics & Materials Science, Tianjin Normal University , Tianjin , 300387 , China

2. Institute of Information Photonics Technology, College of Applied Sciences, Beijng University of Technology , Beijing , 100124 , China

3. School of Physical Science and Technology, Inner Mongolia University , Hohhot , Inner Mongolia , 010021 , China

Abstract

Abstract Great progress in nanophotonics has been demonstrated in tailoring the impinging beams. The physics behind those intriguing effects is to a large extent governed by the parameter of the optical phase. While, simple nanostructures usually suffer from fundamental limitations on their efficiency in wave transformation, especially in the transmission system, associated with their inadequate phase accumulation, challenge their implementation in practical application. Here, we describe a transparent nanostructure built from a pair of partially overlapped gold and aluminum semi-nanoshells that show almost π phase accumulation through material-dependent plasmon resonances. Combined with an optical slab waveguide, the bimetallic metagratings exhibit prominent directional color routing properties in transmission light, which result from switchable Fano resonances between plasmon resonances of bimetallic nanostructures and ±1 order waveguide diffraction modes at two opposite oblique incidences due to sufficient phase shift provided by the asymmetric and bimetallic plasmon resonators. Both theoretical and experimental results show that the Fano-resonance-assisted color routing exhibits a relatively broadband tuning range (∼150 nm with an efficiency of up to 50%) and a color routing efficiency of up to 70% at the central wavelength of λ = 600 nm.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3