A deep neural network for general scattering matrix

Author:

Jing Yongxin1,Chu Hongchen1,Huang Bo2,Luo Jie3ORCID,Wang Wei24,Lai Yun1ORCID

Affiliation:

1. National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing 210093 , China

2. Information Hub , Hong Kong University of Science and Technology (Guangzhou) , Guangzhou 511458 , China

3. School of Physical Science and Technology , Soochow University , Suzhou 215006 , China

4. Hong Kong University of Science and Technology , Hong Kong , China

Abstract

Abstract The scattering matrix is the mathematical representation of the scattering characteristics of any scatterer. Nevertheless, except for scatterers with high symmetry like spheres or cylinders, the scattering matrix does not have any analytical forms and thus can only be calculated numerically, which requires heavy computation. Here, we have developed a well-trained deep neural network (DNN) that can calculate the scattering matrix of scatterers without symmetry at a speed thousands of times faster than that of finite element solvers. Interestingly, the scattering matrix obtained from the DNN inherently satisfies the fundamental physical principles, including energy conservation, time reversal and reciprocity. Moreover, inverse design based on the DNN is made possible by applying the gradient descent algorithm. Finally, we demonstrate an application of the DNN, which is to design scatterers with desired scattering properties under special conditions. Our work proposes a convenient solution of deep learning for scattering problems.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3