Plasmonic spin induced Imbert–Fedorov shift

Author:

You Hao1,Alturki Abdullah2,Zeng Xiaodong1ORCID,Zubairy Muhammad Suhail2

Affiliation:

1. Department of Physics , Shanghai University , Shanghai 200444 , China

2. Institute for Quantum Science and Engineering (IQSE) and Department of Physics and Astronomy, Texas A&M University , College Station , USA

Abstract

Abstract The spin angular momentums of surface plasmon polaritons (SPPs) on chiral material interfaces and the Imbert–Fedorov shifts of linearly polarized light beams are investigated. Compared to a traditional TM-polarized SPP having a transverse spin, the SPP on a chiral material interface also has a longitudinal spin component, resulting from the nature that this new kind of SPP is a hybrid of TE and TM-polarized evanescent waves. When a light beam is incident on a sandwich structure composed of chiral material, prisms, and metal layers, in which the SPP is supported, the reflection and transmission processes can be analogous to the transport of a photon in a waveguide QED system. The SPP with longitudinal spin can be excited by the incident wave and the reflected and transmitted beams carry the spin features of the SPP. Moreover, the beams exhibit large Imbert–Fedorov shifts stemming from the spin–orbit coupling even for a linearly polarized incident beam. The shifts are determined by the longitudinal spin angular momentum and excitation coefficient of the SPP. This present work extends the study of photonic spin–orbit coupling and provides an important platform to investigate the plasmonic spin.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3