Opto-intelligence spectrometer using diffractive neural networks

Author:

Wang Ze1ORCID,Chen Hang2ORCID,Li Jianan13ORCID,Xu Tingfa134ORCID,Zhao Zejia2,Duan Zhengyang2,Gao Sheng2,Lin Xing2ORCID

Affiliation:

1. School of Optics and Photonics , Beijing Institute of Technology , Beijing 100081 , China

2. Department of Electronic Engineering , 12442 Tsinghua University , Beijing 100084 , China

3. Key Laboratory of Photoelectronic Imaging Technology and System, Ministry of Education of China , Beijing 100081 , China

4. Beijing Institute of Technology Chongqing Innovation Center , Chongqing 401135 , China

Abstract

Abstract Spectral reconstruction, critical for understanding sample composition, is extensively applied in fields like remote sensing, geology, and medical imaging. However, existing spectral reconstruction methods require bulky equipment or complex electronic reconstruction algorithms, which limit the system’s performance and applications. This paper presents a novel flexible all-optical opto-intelligence spectrometer, termed OIS, using a diffractive neural network for high-precision spectral reconstruction, featuring low energy consumption and light-speed processing. Simulation experiments indicate that the OIS is able to achieve high-precision spectral reconstruction under spatially coherent and incoherent light sources without relying on any complex electronic algorithms, and integration with a simplified electrical calibration module can further improve the performance of OIS. To demonstrate the robustness of OIS, spectral reconstruction was also successfully conducted on real-world datasets. Our work provides a valuable reference for using diffractive neural networks in spectral interaction and perception, contributing to ongoing developments in photonic computing and machine learning.

Funder

National Key Research and Development Program of China

Young Elite Scientist Sponsorship Program of Beijing Association for Science and Technology

Young Elite Scientist Sponsorship Program of China Association for Science and Technology

National Natural Science Foundation of China

Publisher

Walter de Gruyter GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3