Two tractable models of dynamic light scattering and their application to Fano resonances

Author:

Tribelsky Michael I.12,Miroshnichenko Andrey E.3ORCID

Affiliation:

1. Faculty of Physics , M. V. Lomonosov Moscow State University , Moscow , 119991 , Russia

2. National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) , Moscow , 115409 , Russia

3. School of Information and Information Technology , University of New South Wales Canberra , ACT , 2600 , Australia

Abstract

Abstract We introduce two tractable analytical models to describe dynamic effects at resonant light scattering by subwavelength particles. One of them is based on a generalization of the temporal coupled-mode theory, and the other employs the normal mode approach. We show that sharp variations in the envelope of the incident pulse may initiate unusual, counterintuitive dynamics of the scattering associated with interference of modes with fast and slow relaxation. To exhibit the power of the models, we apply them to explain the dynamic light scattering of a square-envelope pulse by an infinite circular cylinder made of GaP, when the pulse carrier frequency lies in the vicinity of the destructive interference at the Fano resonances. We observe and explain intensive sharp spikes in scattering cross-sections just behind the leading and trailing edges of the incident pulse. The latter occurs when the incident pulse is over and is explained by the electromagnetic energy released in the particle at the previous scattering stages. The accuracy of the models is checked against their comparison with results of the direct numerical integration of the complete set of Maxwell’s equations and occurs very high. The models’ advantages and disadvantages are revealed, and the ways to apply them to other types of dynamic resonant scattering are discussed.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3