Reconfigurable second-order optical all-pass filter

Author:

Chen Yu1,Xu Lu1,Jiang WeiJun1,Wang Lin1,Cui Shuai1,Yu Yu12,Yu Yuan12ORCID,Zhang Xinliang12

Affiliation:

1. Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information , Huazhong University of Science and Technology , Wuhan 430074 , China

2. Optics Valley Laboratory , Wuhan 430074 , China

Abstract

Abstract The optical all-pass filter (APF), which exhibits a constant amplitude response and a variable phase response, is a key to manipulating the optical phase without inducing signal amplitude distortion. High-order APFs are significantly demanded because they can afford large time delays and phase shifts. However, to date, only first-order APFs based on lossy waveguides have been reported. Although high-order APFs can be simply obtained by cascading multiple first-order APFs, the complexity and size are increased. To solve this problem, we propose and demonstrate a second-order APF using Mach–Zehnder interferometer-assisted microring resonators. The device is fabricated based on a silicon-on-insulator platform. Based on the second-order APF, an adjustable time delay between 553 and 948 ps is obtained, and the corresponding amplitude variation is less than 1.7 dB. Meanwhile, a microwave photonic phase shifter is also obtained based on the APF. The microwave phase shift can be adjusted from 0 to 3.27π, with an RF power variation within 2.4 dB. Additionally, the second-order APF can be reconfigured to a first-order APF, which significantly enhances its flexibility. The reconfigured first-order APF can realize an adjustable time delay between 257 and 429 ps, and the amplitude variation is less than 0.9 dB. The proposed high-order APF provides a novel approach to manipulating optical signals.

Funder

the National Key R&D Program of China

National Natural Science Foundation of China

the Program for HUST Academic Frontier Youth Team

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optical All-Pass Filter Realized by Optical Interference;2023 International Topical Meeting on Microwave Photonics (MWP);2023-10-15

2. Microwave Photonic Filters and Applications;Photonics;2023-09-30

3. Modeling and Analysis of Silicon Reflective-Type Microring Resonator Assisted Mzi as Filtering Device;2023

4. Self-Calibrating Microring Resonator by Monitoring Wavelengths;2022 Asia Communications and Photonics Conference (ACP);2022-11-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3