Large-scale metagrating complex-based light field 3D display with space-variant resolution for non-uniform distribution of information and energy

Author:

Hua Jianyu12ORCID,Zhou Fengbin12,Xia Zhongwen12,Qiao Wen12ORCID,Chen Linsen123

Affiliation:

1. School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology , Soochow University , Suzhou 215006 , China

2. Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China , Soochow University , Suzhou 215006 , China

3. SVG Optronics, Co., Ltd , Suzhou 215026 , China

Abstract

Abstract Glasses-free three-dimensional (3D) display has attracted wide interest for providing stereoscopic virtual contents with depth cues. However, how to achieve high spatial and angular resolution while keeping ultrawide field of view (FOV) remains a significant challenge in 3D display. Here, we propose a light field 3D display with space-variant resolution for non-uniform distribution of information and energy. The spatial resolution of each view is modulated according to watching habit. A large-scale combination of pixelated 1D and 2D metagratings is used to manipulate dot and horizontal line views. With the joint modulation of pixel density and view arrangement, the information density and illuminance of high-demand views are at most 5.6 times and 16 times that of low-demand views, respectively. Furthermore, a full-color and video rate light field 3D display with non-uniform information distribution is demonstrated. The prototype provides 3D images with a high spatial resolution of 119.6 pixels per inch and a high angular resolution of 0.25 views per degree in the high-demand views. An ultrawide viewing angle of 140° is also provided. The proposed light field 3D display does not require ultrahigh-resolution display panels and has form factors of thin and light. Thus, it has the potential to be used in portable electronics, window display, exhibition display, as well as tabletop display.

Funder

Jiangsu Provincial Key Research and Development Program

Priority Academic Program Development of Jiangsu Higher Education Institutions

National Natural Science Foundation of China

Leading Technology of Jiangsu Basic Research Plan

National Key Research and Development Program of China

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3