Photonic realization of erasure-based nonlocal measurements

Author:

Pan Wei-Wei12,Xu Xiao-Ye12,Cohen Eliahu3,Wang Qin-Qin12,Chen Zhe12,Jan Munsif12,Han Yong-Jian12,Li Chuan-Feng24,Guo Guang-Can12

Affiliation:

1. CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, People’s Republic of China

2. CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, People’s Republic of China

3. Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel

4. Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, People’s Republic of China

Abstract

AbstractRelativity theory severely restricts the ability to perform nonlocal measurements in quantum mechanics. Studying such nonlocal schemes may thus reveal insights regarding the relations between these two fundamental theories. Therefore, for the last several decades, nonlocal measurements have stimulated considerable interest. However, the experimental implementation of nonlocal measurements imposes profound restrictions because the interaction Hamiltonian cannot contain, in general, nonlocal observables such as the product of local observables belonging to different particles at spacelike-separated regions. In this work, we experimentally realize a scheme for nonlocal measurements with the aid of probabilistic quantum erasure. We apply this scheme to the tasks of performing high-accuracy nonlocal measurements of the parity, as well as measurements in the Bell basis, which do not necessitate classical communication between the parties. Unlike other techniques, the nonlocal measurement outcomes are available locally (upon successful postselection). The state reconstructed via performing quantum tomography on the system after the nonlocal measurement indicates the success of the scheme in retrieving nonlocal information while erasing any local data previously acquired by the parties. This measurement scheme allows to realize any controlled-controlled-gate with any coupling strength. Hence, our results are expected to have conceptual and practical applications to quantum communication and quantum computation.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Key Research Program of Frontier Sciences, CAS

Science Foundation of the CAS

Central Universities

National Postdoctoral Program for Innovative Talents

China Postdoctoral Science Foundation

Anhui Initiative in Quantum Information Technologies

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3