Coherent perfect loss with single and broadband resonators at photonic crystal nanobeam

Author:

Choi Jihoon12ORCID,Hong Young Ki23ORCID,Noh Heeso1ORCID

Affiliation:

1. Department of Physics , Kookmin University , Seoul 02707 , Republic of Korea

2. Research Institute of Natural Science, Gyeongsang National University , Jinju 52828 , Republic of Korea

3. Department of Physics , Gyeongsang National University , Jinju 52828 , Republic of Korea

Abstract

Abstract Coherent perfect absorption (CPA) has been studied in various fields, such as metasurface, photonics, and acoustics, because of its ability to perfectly absorb light at a specific wavelength. However, the narrow bandwidth of CPA makes its application to on-chip photonics challenging. This limitation can be overcome by using a broadband resonator. Here, we demonstrate the coherent perfect loss (CPL) with respect to a single and broadband resonator at photonic crystal nanobeam. By using the finite element method, both cases of the CPL were simulated and optimized for the single and broadband resonators. In the optimized structure, a CPL occurs for both resonators. These results confirm that the perfect loss region for the broadband resonator is wider than that for the single resonator. These results are experimentally verified by fabricating both cases of CPL cases on a silicon-on-insulator by using electron beam lithography. An almost perfect loss of more than 95 % is observed for both single and broadband CPLs. Furthermore, the almost perfect loss region at the broadband resonator broadens more than that at the single resonator. The optimized structure for CPL has the potential for easy applications to on-chip photonics, such as optical switches, modulators, sensors, and logic gates.

Funder

National Research Foundation of Korea

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3