Integrated diffraction gratings on the Bloch surface wave platform supporting bound states in the continuum
Author:
Bezus Evgeni A.12ORCID, Bykov Dmitry A.12ORCID, Doskolovich Leonid L.12ORCID
Affiliation:
1. Image Processing Systems Institute — Branch of the Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences , 151 Molodogvardeyskaya st. , Samara 443001 , Russia 2. Samara National Research University , 34 Moskovskoye shosse , Samara 443086 , Russia
Abstract
Abstract
We propose and theoretically and numerically investigate integrated diffraction gratings for the Bloch surface wave (BSW) platform, which have subwavelength or near-subwavelength period. We demonstrate that, in the oblique incidence geometry of a transverse-electric polarized BSW and with a properly chosen band gap configuration of the photonic crystal supporting the surface waves, the proposed structures operate in the scattering-free regime, when the energy of the incident BSW is divided between the reflected and transmitted BSWs with the same polarization corresponding to the propagating diffraction orders of the grating, and not scattered away from the propagation surface. In this regime, the studied integrated gratings support high-Q resonances and bound states in the continuum not only in the subwavelength case when only the specular (zeroth) diffraction orders propagate, but also in the case when non-evanescent zeroth and −1st diffraction orders satisfy the so-called Littrow mounting condition. The proposed integrated gratings on the BSW platform can be used as efficient narrowband spatial or spectral filters operating in reflection, or as BSW beam splitters or deflectors operating in transmission. The obtained results may find application in two-dimensional photonic circuits for steering the BSW propagation.
Publisher
Walter de Gruyter GmbH
Subject
Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology
Reference61 articles.
1. M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics, vol. 11, no. 9, pp. 543–554, 2017. https://doi.org/10.1038/nphoton.2017.142. 2. J. von Neumann and E. Wigner, “Über merkwürdige diskrete Eigenwerte,” Phys. Z., vol. 30, pp. 467–470, 1929. 3. D. C. Marinica, A. G. Borisov, and S. V. Shabanov, “Bound states in the continuum in photonics,” Phys. Rev. Lett., vol. 100, no. 18, p. 183902, 2008. https://doi.org/10.1103/physrevlett.100.183902. 4. C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mater., vol. 1, p. 16048, 2016. https://doi.org/10.1038/natrevmats.2016.48. 5. K. Koshelev, G. Favraud, A. Bogdanov, Y. Kivshar, and A. Fratalocchi, “Nonradiating photonics with resonant dielectric nanostructures,” Nanophotonics, vol. 8, no. 5, pp. 725–745, 2019. https://doi.org/10.1515/nanoph-2019-0024.
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|