Advances in ultrafast laser structuring of materials at the nanoscale

Author:

Stoian Razvan1ORCID,Colombier Jean-Philippe1

Affiliation:

1. Laboratoire Hubert Curien , UMR 5516 CNRS, Université de Lyon, Université Jean Monnet , 42000 Saint Etienne , France

Abstract

Abstract Laser processing implies the generation of a material function defined by the shape and the size of the induced structures, being a collective effect of topography, morphology, and structural arrangement. A fundamental dimensional limit in laser processing is set by optical diffraction. Many material functions are yet defined at the micron scale, and laser microprocessing has become a mainstream development trend. Consequently, laser microscale applications have evolved significantly and developed into an industrial grade technology. New opportunities will nevertheless emerge from accessing the nanoscale. Advances in ultrafast laser processing technologies can enable unprecedented resolutions and processed feature sizes, with the prospect to bypass optical and thermal limits. We will review here the mechanisms of laser processing on extreme scales and the optical and material concepts allowing us to confine the energy beyond the optical limits. We will discuss direct focusing approaches, where the use of nonlinear and near-field effects has demonstrated strong capabilities for light confinement. We will argue that the control of material hydrodynamic response is the key to achieve ultimate resolution in laser processing. A specific structuring process couples both optical and material effects, the process of self-organization. We will discuss the newest results in surface and volume self-organization, indicating the dynamic interplay between light and matter evolution. Micron-sized and nanosized features can be combined into novel architectures and arrangements. We equally underline a new dimensional domain in processing accessible now using laser radiation, the sub-100-nm feature size. Potential application fields will be indicated as the structuring sizes approach the effective mean free path of transport phenomena.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3