Dynamic thermal camouflage via a liquid-crystal-based radiative metasurface

Author:

Liu Yida1,Song Jinlin1,Zhao Weixian1,Ren Xuecheng1,Cheng Qiang1,Luo Xiaobing1,Fang Nicholas Xuanlai2,Hu Run1

Affiliation:

1. State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

2. Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

Abstract

AbstractThermal camouflage, which is used to conceal objects in the infrared vision for confrontation with infrared detection in civilian or military applications, has garnered increasing attraction and interest recently. Compared with conductive thermal camouflage, that is to tune heat conduction to achieve equivalent temperature fields, radiative thermal camouflage, based on emissivity engineering, is more promising and shows much superiority in the pursuit of dynamic camouflage technology when resorting to stimuli-responsive materials. In this paper, we demonstrate the emissivity-engineered radiative metasurface to realize dynamic thermal camouflage functionality via a flying laser heat source on the metal-liquid-crystal-metal (MLCM) platform. We employ a rigorous coupled-wave algorithm to calculate the surface emissivity of Au/LC/Au microstructures, where the LC-orientation angle distribution is quantified by minimizing the emitted thermal energy standard deviation throughout the whole plate. Emissivity engineering on the MCLM platform is attributed to multiple magnetic polariton resonance, and agrees well with the equivalent electric circuit analysis. Through this electrical modulation strategy, the moving hot spot in the original temperature field is erased and a uniform temperature field is observed in the infrared camera instead, demonstrating the very good dynamic thermal camouflage functionality. The present MLCM-based radiative metasurface may open avenues for high-resolution emissivity engineering to realize novel thermal functionality and develop new applications for thermal metamaterials and meta-devices.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3