Affiliation:
1. Metamaterials Lab, Electrical and Computer Engineering Department , Northeastern University , Boston , MA 02115 , USA
Abstract
Abstract
The frequency mixing property of time-modulated metasurfaces, attributed to the well-known phenomenon of temporal photonic transition, has led to several exotic functionalities in the last lustrum. Based on this concept, we demonstrate the possibility of achieving nonreciprocal responses in the near-infrared regime via combining a time-modulated platform and a static high-Q metasurface. In particular, the temporal metasurface is designed to up-convert the incident tone to the first higher-order harmonic, while the static platform is implemented to establish a filtering behavior with respect to the incident frequency. It is shown that while the receiver port acquires the transmitted signal in the forward direction, the amount of received power becomes negligible under the time-reversal scenario, which indicates the presented configuration exhibits different optical responses from opposite directions. In addition, the role of operating wavelength and the modulation frequency on the power isolation level are investigated, and it is demonstrated that by appropriate selection, the isolation level can reach −30 dB. Since this is the first time a nonreciprocal response is obtained in the near-infrared regime via a pure temporal modulation, we believe the idea of this paper can be of utmost importance in various applications, such as tunable optical isolators.
Subject
Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献