Optical nonreciprocity via transmissive time-modulated metasurfaces

Author:

Barati Sedeh Hooman1ORCID,Mohammadi Dinani Hediyeh1,Mosallaei Hossein1

Affiliation:

1. Metamaterials Lab, Electrical and Computer Engineering Department , Northeastern University , Boston , MA 02115 , USA

Abstract

Abstract The frequency mixing property of time-modulated metasurfaces, attributed to the well-known phenomenon of temporal photonic transition, has led to several exotic functionalities in the last lustrum. Based on this concept, we demonstrate the possibility of achieving nonreciprocal responses in the near-infrared regime via combining a time-modulated platform and a static high-Q metasurface. In particular, the temporal metasurface is designed to up-convert the incident tone to the first higher-order harmonic, while the static platform is implemented to establish a filtering behavior with respect to the incident frequency. It is shown that while the receiver port acquires the transmitted signal in the forward direction, the amount of received power becomes negligible under the time-reversal scenario, which indicates the presented configuration exhibits different optical responses from opposite directions. In addition, the role of operating wavelength and the modulation frequency on the power isolation level are investigated, and it is demonstrated that by appropriate selection, the isolation level can reach −30 dB. Since this is the first time a nonreciprocal response is obtained in the near-infrared regime via a pure temporal modulation, we believe the idea of this paper can be of utmost importance in various applications, such as tunable optical isolators.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3