Data-driven concurrent nanostructure optimization based on conditional generative adversarial networks

Author:

Baucour Arthur1ORCID,Kim Myungjoon1ORCID,Shin Jonghwa1ORCID

Affiliation:

1. Department of Materials Science and Engineering , Korea Advanced Institute of Science and Technology , Daejeon 34141 , South Korea

Abstract

Abstract Iterative numerical optimization is a ubiquitous tool to design optical nanostructures. However, there can be a significant performance gap between the numerically simulated results, with pristine shapes, and the experimentally measured values, with deformed profiles. We introduce conditional generative adversarial networks (CGAN) into the standard iterative optimization loop to learn process-structure relationships and produce realistic simulation designs based on the fabrication conditions. This ensures that the process-structure mapping is accurate for the specific available equipment and moves the optimization space from the structural parameters (e.g. width, height, and period) to process parameters (e.g. deposition rate and annealing time). We demonstrate this model agnostic optimization platform on the design of a red, green, and blue color filter based on metallic gratings. The generative network can learn complex M-to-N nonlinear process-structure relations, thereby generating simulation profiles similar to the training data over a wide range of fabrication conditions. The CGAN-based optimization resulted in fabrication parameters leading to a realistic design with a higher figure of merit than a standard optimization using pristine structures. This data-driven approach can expedite the design process both by limiting the design search space to a fabrication-accurate subspace and by returning the optimal process parameters automatically upon obtaining the optimal structure design.

Funder

LG Display

National Research Foundation of Korea

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3