Advanced encryption method realized by secret shared phase encoding scheme using a multi-wavelength metasurface

Author:

Li Zhenfei1,Premaratne Malin2,Zhu Weiren1ORCID

Affiliation:

1. Department of Electronic Engineering , Shanghai Jiao Tong University , Shanghai, 200240 , China

2. Advanced Computing and Simulation Laboratory (AχL), Department of Electrical and Computer Systems Engineering , Monash University , Clayton, 3800 , Victoria , Australia

Abstract

Abstract Multi-channel information encryption technology has been implemented by optical metasurfaces owing to their superior ability to control the phase, amplitude, wavelength and polarization of incident light. However, current metasurface-based multi-channel encryption technologies suffer from information leakage in non-full channel decoding processes. To better increase the security of the encrypted information, we develop a secret shared phase encoding scheme by combining a visual secret sharing scheme with a metasurface-based phase-encoding technique. Our method achieves its high-concealment through mapping the target image into a set of unrecognizable phase-only keys that are subsequently encoded by a multi-wavelength metasurface. In the decryption process, the secret information can be reconstructed only by decoding and stacking all the wavelength channels of the metasurface. At the same time, chaotic images can be extracted from the other channels without revealing any original information. The simulated results and the theoretical analysis show the strong robustness and high security of our encryption setup, which is sure to find applications in emerging optical encryption schemes.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shanghai

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3