Spatial and time-resolved properties of emission enhancement in polar/semi-polar InGaN/GaN by surface plasmon resonance

Author:

Ikeda Kento1,Kawai Kanata1,Kametani Jun1,Matsuyama Tetsuya1,Wada Kenji1,Okada Narihito2,Tadatomo Kazuyuki2,Okamoto Koichi1ORCID

Affiliation:

1. Department of Physics and Electronics , Osaka Metropolitan University , Gakuen-cho, Naka-ku, Sakai-shi , Osaka 599-8531 , Japan

2. Department of Electrical and Electronic Engineering , Yamaguchi University , Tokiwadai, Ube-shi , Yamaguchi 755-8611 , Japan

Abstract

Abstract Light-emitting diodes (LEDs) are widely used as next-generation light sources because of their various advantages. However, their luminous efficiency is remarkably low at the green-emission wavelength. The luminous efficiencies of InGaN/GaN quantum wells (QWs) significantly decrease with increasing indium content in the green wavelength region, mainly owing to the quantum-confined Stark effect (QCSE). This green gap problem can be solved using QWs grown on semi-polar GaN substrates, such as the {11–22} planes, to reduce the QCSE. We propose that the use of surface plasmons (SPs) is a promising way to improve the light emission efficiency of light-emitting materials such as InGaN/GaN QWs. SP resonance increases the spontaneous emission rates of the excited states, causes a relative reduction in non-radiative relaxation, and ultimately increases the internal quantum efficiencies. In this study, the light emissions of InGaN/GaN QWs grown on polar and semi-polar GaN were investigated using micro-photoluminescence (PL). We successfully enhanced the light emission of semi-polar GaN via SP resonance. The PL peak intensities and wavelengths were mapped and compared to determine the underlying mechanisms. We also measured the emission lifetimes by time-resolved PL and interpreted the detailed mechanism of SP-enhanced emissions. It was found that SP resonances can control not only the emission efficiency but also the exciton dynamics, such as exciton localization effects, QCSE screening, and defect level saturation. We conclude that the green gap problem can be solved by SP-enhanced light emission in semipolar InGaN/GaN.

Funder

Japan Society for the Promotion of Science

Publisher

Walter de Gruyter GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3