A large-size and polarization-independent two dimensional grating fabricated by scanned reactive-ion-beam etching

Author:

Zhang Wei1,Li Wenhao1ORCID,Zhang Tong1,Zheng Zhongming1,Chi Zhendong1,Jiang Yanxiu1,Wu Na1

Affiliation:

1. Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences , No. 3888 Dong Nanhu Road , Changchun , Jilin , 130033 , China

Abstract

Abstract Scanned reactive-ion-beam etching method was proposed to transfer two-dimensional mask patterns into quartz substrate, which would produce a larger-size and polarization-independent two-dimensional grating. This method was realized by moving grating substrate in a unidimensional scanning manner and adjusting ion beam density in the vertical scanning direction. Graphite plates between the ion beam source and the substrate were used to correct the beam density. The original Gaussian ion beam density was changed to a uniform distribution to establish a knife-edge shape around the vertical scanning direction. Therefore, a large-area pattern with consistent depth and duty cycle would be engraved into a quartz substrate. A two-dimensional, 1200 groves/mm grating with an 85-mm × 85-mm area was fabricated under scanned reactive-ion-beam etching method and exhibited a 0.197λ (λ = 632.8 nm) diffraction wave front. At 780 nm, the efficiency nonuniformity was less than 9%, and the average diffraction efficiencies of transverse-magnetic and transverse-electric polarized light were 57.2 and 58.0%, respectively. The large-size two-dimensional grating with uniform diffraction efficiency and polarization independence enabled grating displacement measurement with high resolution, long measurement range, multiple degrees of freedom, and potential miniaturization.

Funder

National Key R&D Program of China

Jinlin Province Science and Technology Development Plane

Fudan University-CIOMP Joint Fund

National Natural Science Foundation of China

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3