Nano-shaping of chiral photons
Author:
Sunaba Yuji1ORCID, Ide Masaki1, Takei Ryo1, Sakai Kyosuke1, Pin Christophe1ORCID, Sasaki Keiji1ORCID
Affiliation:
1. Research Institute for Electronic Science , Hokkaido University , Sapporo , Hokkaido , Japan
Abstract
Abstract
Localized surface plasmon polaritons can confine the optical field to a single-nanometer-scale area, strongly enhancing the interaction between photons and molecules. Theoretically, the ultimate enhancement might be achieved by reducing the “photon size” to the molecular extinction cross-section. In addition, desired control of electronic transitions in molecules can be realized if the “photon shape” can be manipulated on a single-nanometer scale. By matching the photon shape with that of the molecular electron wavefunction, optically forbidden transitions can be induced efficiently and selectively, enabling various unconventional photoreactions. Here, we demonstrate the possibility of forming single-nanometer-scale, highly intense fields of optical vortices using designed plasmonic nanostructures. The orbital and spin angular momenta provided by a Laguerre–Gaussian beam are selectively transferred to the localized plasmons of a metal multimer structure and then confined into a nanogap. This plasmonic nano-vortex field is expected to fit the molecular electron orbital shape and spin with the corresponding angular momenta.
Funder
Japan Society for the Promotion of Science
Publisher
Walter de Gruyter GmbH
Subject
Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology
Reference36 articles.
1. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes,” Phys. Rev. A, vol. 45, no. 11, p. 8185, 1992. https://doi.org/10.1103/physreva.45.8185. 2. H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett., vol. 75, no. 5, p. 826, 1995. https://doi.org/10.1103/physrevlett.75.826. 3. M. E. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature, vol. 394, no. 6691, pp. 348–350, 1998. https://doi.org/10.1038/28566. 4. A. Lehmuskero, R. Ogier, T. Gschneidtner, P. Johansson, and M. Käll, “Ultrafast spinning of gold nanoparticles in water using circularly polarized light,” Nano Lett., vol. 13, no. 7, pp. 3129–3134, 2013. https://doi.org/10.1021/nl4010817. 5. M. L. Watson, D. L. Brown, A. B. Stilgoe, J. L. Stow, and H. Rubinsztein-Dunlop, “Rotational optical tweezers for active microrheometry within living cells,” Optica, vol. 9, no. 9, pp. 1066–1072, 2022. https://doi.org/10.1364/optica.468713.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|