Raman scattering in high-refractive-index nanostructures

Author:

Raza Søren1ORCID,Kristensen Anders2

Affiliation:

1. Department of Physics , Technical University of Denmark , DK-2800 Kongens Lyngby , Denmark

2. Department of Health Technology , Technical University of Denmark , DK-2800 Kongens Lyngby , Denmark

Abstract

Abstract The advent of resonant dielectric nanomaterials has provided a new path for concentrating and manipulating light on the nanoscale. Such high-refractive-index materials support a diverse set of low-loss optical resonances, including Mie resonances, anapole states, and bound states in the continuum. Through these resonances, high-refractive-index materials can be used to engineer the optical near field, both inside and outside the nanostructures, which opens up new opportunities for Raman spectroscopy. In this review, we discuss the impact of high-refractive-index nano-optics on Raman spectroscopy. In particular, we consider the intrinsic Raman enhancement produced by different dielectric resonances and their theoretical description. Using the optical reciprocity theorem, we derive an expression which links the Raman enhancement to the enhancement of the stored electric energy. We also address recent results on surface-enhanced Raman spectroscopy based on high-refractive-index dielectric materials along with applications in stimulated Raman scattering and nanothermometry. Finally, we discuss the potential of Raman spectroscopy as a tool for detecting the optical near-fields produced by dielectric resonances, complementing reflection and transmission measurements.

Funder

Det Frie Forskningsråd

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3