Affiliation:
1. Institute of Optoelectronics & Nanomaterials, MIIT Key Laboratory of Advanced Display Materials and Devices, College of Materials Science and Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
Abstract
Abstract
Photodetectors based on semiconducting materials are vital building blocks for modern systems containing optoelectronic modules. Although commercial semiconductors have established good performances, they are plagued by complex processing procedures and stalled performances. Recently, lead halide perovskites with superior semiconducting attributes have achieved stunning progress in optoelectronics including photodetectors. However, the toxicity of lead and the ill stability significantly handicap their practical use. Great efforts thus have been devoted to developing lead-free alternatives with improved stability and uncompromised traits. In this review, we thoroughly summarize recent progress in photodetectors based on lead-free halide perovskite variants. The substitution of lead with new elements usually induces a change in structure and ensuingly optoelectronic particularities, which afford unique suitability for a collection of functionality-specified photodetectors. Especially, the family of lead-free variants witnesses a range of bandgaps that construct a broadband photon detection spanning from near-infrared (NIR) to visible regimes. Besides, stress is laid on the X-ray detection capability based on especially bismuth-type lead-free perovskites, of which the strong X-ray absorption, large bulk resistance, suppressed ion migration, and efficient charge collection enable superior X-ray sensitivities and ultralow detection limits. Finally, the challenges and visions are discussed.
Subject
Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献