Dynamic millimeter-wave OAM beam generation through programmable metasurface

Author:

Bai Xudong12,Zhang Fuli13,Sun Li1,Cao Anjie4,He Chong5,Zhang Jin5,Zhu Weiren5ORCID

Affiliation:

1. School of Microelectronics , Northwestern Polytechnical University , Xi’an , 710129 , China

2. Shanghai Aerospace Electronics Co., Ltd. , Shanghai , 201821 , China

3. School of Physical Science and Technology , Northwestern Polytechnical University , Xi’an , 710129 China

4. Shanghai Institute of Satellite Engineering , Shanghai , 201109 , China

5. Department of Electronic Engineering , Shanghai Jiao Tong University , Shanghai , 200240 , China

Abstract

Abstract Millimeter-wave (mmWave) and orbital angular momentum (OAM) multiplexing are two key technologies for modern wireless communications, where significant efforts have been devoted to combining these two technologies for extremely high channel capacities. Recently, programmable metasurfaces have been extensively studied for stimulating dynamic multi-mode OAM beams, owing to their ability of subtle dynamic modulation over electromagnetic waves in a digital manner. However, programmable metasurfaces for mmWave OAM stimulation are rarely mentioned, due to the requirement of extremely high processing precision for mmWave applications. In this paper, a programmable metasurface is presented to stimulate dynamic multi-mode mmWave vortex beams. The proposed metasurface is composed of electronically reconfigurable units, which is obtained through configuration integration of a PIN diode within each radiation patch for modulating the unit resonant property. Both low reflection losses and stabilized inverse phase states are obtained for the binary unit coding states within the operation band. Through modulating the real-time coding distribution on the metasurface by programmable bias circuit, the generation of mmWave OAM beams with mode numbers l = 0, l = +1, l = +2, and l = +3 are numerically designed and experimentally verified. Our study paves a new perspective for the cross amalgamation of both mmWave and multi-mode OAM technologies.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3