Multi-freedom metasurface empowered vectorial holography

Author:

Deng Zi-Lan1ORCID,Wang Zhi-Qiang1,Li Feng-Jun1,Hu Meng-Xia1,Li Xiangping1ORCID

Affiliation:

1. Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications , Institute of Photonics Technology, Jinan University , Guangzhou 510632 , China

Abstract

Abstract Optical holography capable of the complete recording and reconstruction of light’s wavefront, plays significant roles on interferometry, microscopy, imaging, data storage, and three-dimensional displaying. Conventional holography treats light as scalar field with only phase and intensity dimensions, leaving the polarization information entirely neglected. Benefiting from the multiple degrees of freedom (DOFs) for optical field manipulation provided by the metasurface, vectorial holography with further versatile control in both polarization states and spatial distributions, greatly extended the scope of holography. As full vectorial nature of light field has been considered, the information carried out by light has dramatically increased, promising for novel photonic applications with high performance and multifarious functionalities. This review will focus on recent advances on vectorial holography empowered by multiple DOFs metasurfaces. Interleaved multi-atom approach is first introduced to construct vectorial holograms with spatially discrete polarization distributions, followed by the versatile vectorial holograms with continuous polarizations that are designed usually by modified iterative algorithms. We next discuss advances with further spectral response, leading to vivid full-color vectorial holography; and the combination between the far-field vectorial wavefront shaping enabled by vectorial holography and the near-field nano-printing functionalities by further exploiting local polarization and structure color responses of the meta-atom. The development of vectorial holography provides new avenues for compact multi-functional photonic devices, potentially useful in optical encryption, anticounterfeiting, and data storage applications.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3