Metal-induced energy transfer

Author:

Gregor Ingo1,Chizhik Alexey2,Karedla Narain3,Enderlein Jörg24

Affiliation:

1. Third Institute of Physics–Biophysics, Georg August University, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany

2. Third Institute of Physics–Biophysics, Georg August University, Göttingen, Germany

3. Physical and Theoretical Chemistry, University of Oxford, Oxford OX1 3TA, UK

4. Cluster of Excellence “Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells” (MBExC), Georg August University, Göttingen, Germany

Abstract

AbstractSince about a decade, metal-induced energy transfer (MIET) has become a tool to measure the distance of fluorophores to a metal-coated surface with nanometer accuracy. The energy transfer from a fluorescent molecule to surface plasmons within a metal film results in the acceleration of its radiative decay rate. This can be observed as a reduction of the molecule’s fluorescence lifetime which can be easily measured with standard microscopy equipment. The achievable distance resolution is in the nanometer range, over a total range of about 200 nm. The method is perfectly compatible with biological and even live cell samples. In this review, we will summarize the theoretical and technical details of the method and present the most important results that have been obtained using MIET. We will also show how the latest technical developments can contribute to improving MIET, and we sketch some interesting directions for its future applications in the life sciences.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

Reference90 articles.

1. Sensibilisierte Fluoreszenz nach strahlungslosem Energieübergang durch dünne Schichten;Ber Bunsenges Phys Chem,1963

2. Dual-color metal-induced and Förster resonance energy transfer for cell nanoscopy;Mol Biol Cell,2018

3. 3D superresolution microscopy by supercritical angle detection;Opt Express,2014

4. Wide-angle interference and multipole nature of fluorescence and phosphorescence of organic dyes;Ber Bunsenges Phys Chem,1968

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3