First characterization of the development of bleached kraft softwood pulp fiber interfaces during drying and rewetting using FRET microscopy

Author:

Thomson Cameron I.,Lowe Robert M.,Ragauskas Arthur J.

Abstract

Abstract Cellulosic fiber interfaces are critical to the material properties of paper. Likewise, the presence of water in a paper sheet is an important property, because paper is a wet-laid structure and the cellulosic fibers that compose it are hygroscopic. This work uses a fluorescence microscopy technique established by the authors to study the development of individual bleached kraft pulp fiber crossings in situ during drying and through a cycle of rewetting and wet pressing. The results indicate that coalescence of the fiber-fiber interface occurs during drying and that the fluorescence resonance energy transfer (FRET) response, which is proportional to the distance between fiber components, increases logarithmically with time. The FRET signal of once-dried fiber crossings increases dramatically after rewetting and wet pressing for a second time. This indicates that fiber bonds are still compliant after a single drying cycle and that the interactions between fiber components are likely reversible at the solids content present in bleached kraft pulp fiber crossings dried at 25°C and 50% relative humidity.

Publisher

Walter de Gruyter GmbH

Subject

Biomaterials

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3