Author:
Fackler Karin,Kuncinger Thomas,Ters Thomas,Srebotnik Ewald
Abstract
Abstract
Enzymatic functionalization is an attractive tool to provide a reactive interface for further processing of lignocellulosic materials, such as wood particles and fibers. Here, spruce wood particles have been functionalized by fungal laccase combined with 4-hydroxy-3-methoxy-benzylamine (HMBA) or 4-hydroxy-3-methoxybenzylurea (HMBU). The expectation was crosslinking with resins in subsequent glueing processes, which should improve strength properties of particle boards. Essential process parameters, such as liquid to solid mass ratio and treatment time, were optimized on a laboratory scale resulting in HMBA and HMBU binding yields of 90% and above as determined by radiochemical mass balance analysis. We employed a multifactorial experimental design for board production from treated wood particles and urea/formaldehyde resin. Mechanical testing and multivariate data analysis revealed, for the first time, an increase of internal bond (IB) as a result of functionalization with HMBU. HMBA was not successful. Variance analysis of relevant parameters and their interactions demonstrated a highly significant difference (P>99.99%) between boards treated with laccase/HMBU versus untreated wood particles. Due to positive interactions, functionalization was most effective at high bulk density (750 kg m-3) and high resin content (10%) resulting in a calculated IB improvement of 0.12 N m-2 (21%).
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献