Coupling of subcritical methanol with acidic ionic liquids for the acidity reduction of naphthenic acids

Author:

Zafar Faisal1,Mandal Pradip Chandra1,Shaari Ku Zilati Bt Ku1,Ullah Zahoor2

Affiliation:

1. Universiti Teknologi PETRONAS , Department of Chemical Engineering , 32610 , Bandar Seri Iskandar , Perak, Malaysia

2. Balochistan University of IT , Department of Chemistry, Engineering and Management Sciences (BUITEMS) , Takatu Campus, Quetta - 87100 , Pakistan

Abstract

Abstract The presence of naphthenic acids (NAs) in crude oil is the major cause of corrosion in the refineries and its processing equipment. The goal of this study is to reduce the total acid number (TAN) of NAs by treating them with subcritical methanol in the presence of acidic ionic liquid (AIL) catalysts. Experiments were carried out in an autoclave batch reactor and the effect of different reaction parameters was investigated. It was observed that TAN reduction was positively dependent on the temperature and concentration of the AIL whereas excess of methanol has a negative effect. Approximately 90% TAN reduction was achieved under the optimized reaction conditions using [BMIM]HSO4 as catalyst. It was also perceived from the experimental results that the AILs with longer alkyl chain exhibited higher catalytic activity. The activity and stability of AIL showed that they can be promising catalyst to esterify NAs under subcritical methanol.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering,General Chemistry,Biotechnology

Reference34 articles.

1. 1. Clemente, J.S. & Fedorak, P.M. (2005). A review of the occurrence, analyses, toxicity, and biodegradation of naphthenic acids. Chemosphere 60(5), 585–600. DOI: 10.1016/j.chemosphere.2005.02.065.10.1016/j.chemosphere.2005.02.065

2. 2. Headley, J.V., Peru, K.M. & Barrow, M.P. (2016). Advances in mass spectrometric characterization of naphthenic acids fraction compounds in oil sands environmental samples and crude oil—a review. Mass Spectr. Rev. 35(2), 311–328. DOI: 10.1002/mas.21472.10.1002/mas.21472

3. 3. Mandal, P.C. & Nagarajan, T. (2016) Kinetics and reaction pathways of total acid number reduction of cyclopentane carboxylic acid using subcritical methanol. Pol. J. Chem. Technol. 18(3) 44–49. DOI: 10.1515/pjct-2016-0047.10.1515/pjct-2016-0047

4. 4. Shi, L.J., Shen, B.X. & Wang, G.Q. (2008). Removal of naphthenic acids from Beijiang crude oil by forming ionic liquids. Energy Fuels 22(6), 4177–4181. DOI: 10.1021/ef800497p.10.1021/ef800497p

5. 5. Lirong, D. (2005). Formation mechanism and model of oil and gas accumulations in the Melut Basin, Sudan. Bulletin of Mineralogy Petrol. Geochem. 24(1), 50–57.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3