Adsorption kinetic, equilibrium and thermodynamic investigations of Zn(II) and Ni(II) ions removal by poly(azomethinethioamide) resin with pendent chlorobenzylidine ring

Author:

Kumar P. Senthil1,Ethiraj H.1,Venkat Anita1,Deepika N.1,Nivedha S.1,Vidhyadevi T.2,Ravikumar L.3,Sivanesan S.2

Affiliation:

1. SSN College of Engineering, Department of Chemical Engineering, Chennai, 603 110, India

2. AC Tech, Anna University, Department of Applied Science and Technology, Chennai, 600 025 India

3. C.B.M. College, Department of Chemistry, Coimbatore, 641 042, India

Abstract

Abstract This paper reports the application of poly(azomethinethioamide) (PATA) resin having the pendent chlorobenzylidine ring for the removal of heavy metal ions such as Zn(II) and Ni(II) ions from the aqueous solutions by adsorption technology. Kinetic, equilibrium and thermodynamic models for Zn(II) and Ni(II) ions adsorption were applied by considering the effect of contact time, initial metal ion concentration and temperature data, respectively. The adsorption influencing parameters for the maximum removal of metal ions were optimized. Adsorption kinetic results followed the pseudo-second order kinetic model based on the correlation coefficient (R2) values and closed approach of experimental and calculated equilibrium adsorption capacity values. The removal mechanism of metal ions by PATA was explained with the Boyd kinetic model, Weber and Morris intraparticle diffusion model and Shrinking Core Model (SCM). Adsorption equilibrium results followed the Freundlich model based on the R2 values and error functions. The maximum monolayer adsorption capacity of PATA for Zn(II) and Ni(II) ions removal were found to be 105.4 mg/g and 97.3 mg/g, respectively. Thermodynamic study showed the adsorption process was feasible, spontaneous, and exothermic in nature.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering,General Chemistry,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3