Improving heat aging and mechanical properties of fluoroelastomer using carbon nanotubes
Author:
Heidarian Javad12, Hassan Aziz1
Affiliation:
1. University of Malaya, Polymer and Composite Materials Research Laboratory, Department of Chemistry, 50603 , Kuala Lumpur , Malaysia 2. Nanotechnology Research Center, Research Institute of Petroleum Industry(RIPI)- West side of Azadi Complex-Tehran-Iran, 1485733111 , Tehran , Iran (Islamic Republic of)
Abstract
Abstract
Carbon nanotube (CNT)-, carbon black (CB)-filled fluoroelastomer (FE) and unfilled-FE compounds were prepared (CNT/FE, CB/FE and FE). The compounds were subjected to heat air aging and characterized by tensile test and X-Ray Diffraction (XRD) analysis. Results show that CNT improved tensile properties of FE before and after aging. All samples show stress induced crystallization (SIC) during tension. XRD results show that under all conditions, the crystals were in the form of γ-phase. For both aged and un-aged specimens, the degree of crystallinity (Xc) is low. After tensile stretching, Xc of un-aged specimens increases tremendously, with larger crystal size. Under the same conditions, the order of elongation at break (EL) was FE > CB/FE > CNT/FE. Normal modulus (NM) and tangent modulus (TM) at the same conditions was in the order of CNT/FE > CB/FE > FE. Tensile strength had the order of CNT/FE > CB/FE > FE.
Publisher
Walter de Gruyter GmbH
Subject
General Chemical Engineering,General Chemistry,Biotechnology
Reference28 articles.
1. 1. Endo, M., Noguchi, T., Ito, M., Takeuchi, K., Hayashi, T., Kim, Y.A., Wanibuchi, T., Jinnai, H., Terrones, M. & Dresselhaus, M.S. (2008). Extreme-performance rubber nanocomposites for probing and excavating deep oil resources using multi-walled carbon nanotubes. Adv. Func. Mat. 18, 3403-3409. DOI: 10.1002/adfm.200801136. 2. 2. Noguchi, T., Ueki, H., Inukai, S., Iinou, S. & Ito, M. (2011). U.S Patent No. 2011/0160375. Washington, D.C.: U.S. Patent and Trademark Offi ce. 3. 3. Ito, M., Noguchi, T., Ueki, H., Takeuchi, K. & Endo, M. (2011). Carbon nanotube enables quantum leap in oil recovery. Mater. Res. Bull. 46, 1480-1484. DOI: 10.1016/j. materresbull.2011.04.028. 4. 4. Faulkner, W.R. , Mumby, K.J., Fischer, A., Jozokos, T. & Zhou, S. (2009). Multiwall carbon nanotube reinforcement of HNBR and FKM. Proc. of the Fall 176th Technical meeting of the rubber division, Pittsburgh, PA, USA, 13-15 Oct. 5. 5. Wang, Y., Liu, L., Luo, Y. & Jia, D. (2009). Aging behavior and thermal degradation of fl uoroelastomer reactive blends with poly-phenol hydroxy EPDM. Polym. Degrad. Stab. 94, 443-449. DOI: 10.1016/j.polymdegradstab.2008.11.007.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|