The Brunn--Minkowski inequality and a Minkowski problem for 𝒜-harmonic Green's function

Author:

Akman Murat1,Lewis John2,Saari Olli3,Vogel Andrew4

Affiliation:

1. Department of Mathematics , University of Connecticut , Storrs , CT 06269-1009 , USA

2. Department of Mathematics , University of Kentucky , Lexington , Kentucky, 40506 , USA

3. Mathematisches Institut , Universität Bonn , Endenicher Allee 60, 53115 Bonn , Germany

4. Department of Mathematics , Syracuse University , Syracuse , New York 13244 , USA

Abstract

Abstract In this article we study two classical problems in convex geometry associated to 𝒜 {\mathcal{A}} -harmonic PDEs, quasi-linear elliptic PDEs whose structure is modelled on the p-Laplace equation. Let p be fixed with 2 n p < {2\leq n\leq p<\infty} . For a convex compact set E in n {\mathbb{R}^{n}} , we define and then prove the existence and uniqueness of the so-called 𝒜 {\mathcal{A}} -harmonic Green’s function for the complement of E with pole at infinity. We then define a quantity C 𝒜 ( E ) {\mathrm{C}_{\mathcal{A}}(E)} which can be seen as the behavior of this function near infinity. In the first part of this article, we prove that C 𝒜 ( ) {\mathrm{C}_{\mathcal{A}}(\,\cdot\,)} satisfies the following Brunn–Minkowski-type inequality: [ C 𝒜 ( λ E 1 + ( 1 - λ ) E 2 ) ] 1 p - n λ [ C 𝒜 ( E 1 ) ] 1 p - n + ( 1 - λ ) [ C 𝒜 ( E 2 ) ] 1 p - n [\mathrm{C}_{\mathcal{A}}(\lambda E_{1}+(1-\lambda)E_{2})]^{\frac{1}{p-n}}\geq% \lambda[\mathrm{C}_{\mathcal{A}}(E_{1})]^{\frac{1}{p-n}}+(1-\lambda)[\mathrm{C% }_{\mathcal{A}}(E_{2})]^{\frac{1}{p-n}} when n < p < {n<p<\infty} , 0 λ 1 {0\leq\lambda\leq 1} , and E 1 , E 2 {E_{1},E_{2}} are nonempty convex compact sets in n {\mathbb{R}^{n}} . While p = n {p=n} then C 𝒜 ( λ E 1 + ( 1 - λ ) E 2 ) λ C 𝒜 ( E 1 ) + ( 1 - λ ) C 𝒜 ( E 2 ) , \mathrm{C}_{\mathcal{A}}(\lambda E_{1}+(1-\lambda)E_{2})\geq\lambda\mathrm{C}_% {\mathcal{A}}(E_{1})+(1-\lambda)\mathrm{C}_{\mathcal{A}}(E_{2}), where 0 λ 1 {0\leq\lambda\leq 1} and E 1 , E 2 {E_{1},E_{2}} are convex compact sets in n {\mathbb{R}^{n}} containing at least two points. Moreover, if equality holds in the either of the above inequalities for some E 1 {E_{1}} and E 2 {E_{2}} , then under certain regularity and structural assumptions on 𝒜 {\mathcal{A}} we show that these two sets are homothetic. The classical Minkowski problem asks for necessary and sufficient conditions on a non-negative Borel measure on the unit sphere 𝕊 n - 1 {\mathbb{S}^{n-1}} to be the surface area measure of a convex compact set in n {\mathbb{R}^{n}} under the Gauss mapping for the boundary of this convex set. In the second part of this article we study a Minkowski-type problem for a measure associated to the 𝒜 {\mathcal{A}} -harmonic Green’s function for the complement of a convex compact set E when n p < {n\leq p<\infty} . If μ E {\mu_{E}} denotes this measure, then we show that necessary and sufficient conditions for existence under this setting are exactly the same conditions as in the classical Minkowski problem. Using the Brunn–Minkowski inequality result from the first part, we also show that this problem has a unique solution up to translation.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Analysis

Reference34 articles.

1. D. R. Adams and L. I. Hedberg, Function Spaces and Potential Theory, Grundlehren Math. Wiss. 314, Springer, Berlin, 1996.

2. M. Akman, On the dimension of a certain measure in the plane, Ann. Acad. Sci. Fenn. Math. 39 (2014), no. 1, 187–209.

3. M. Akman, J. Gong, J. Hineman, J. Lewis and A. Vogel, The Brunn–Minkowski inequality and a Minkowski problem for nonlinear capacity, preprint (2017), https://arxiv.org/abs/1709.00447; to appear in Mem. Amer. Math. Soc.

4. M. Akman, J. Lewis and A. Vogel, σ-finiteness of elliptic measures for quasilinear elliptic PDE in space, Adv. Math. 309 (2017), 512–557.

5. M. Akman, J. L. Lewis and A. Vogel, On the logarithm of the minimizing integrand for certain variational problems in two dimensions, Anal. Math. Phys. 2 (2012), no. 1, 79–88.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A flow to the Orlicz-Minkowski-type problem of p-capacity;Advances in Applied Mathematics;2024-04

2. On the polar Orlicz Minkowski type problem for the general mixed p-capacity;Journal of Mathematical Analysis and Applications;2023-06

3. A curvature flow to the L p Minkowski-type problem of q-capacity;Advanced Nonlinear Studies;2023-01-01

4. The Orlicz Minkowski problem for the electrostatic p-capacity;Advances in Applied Mathematics;2022-06

5. On the Orlicz Minkowski problem for logarithmic capacity;Journal of Mathematical Analysis and Applications;2022-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3