Sorption of Eu(III) at feldspar/water interface: effects of pH, organic matter, counter ions, and temperature

Author:

Li Ping1,Wu Hanyu12,Liang Jianjun1,Yin Zhuoxin2,Pan Duoqiang2,Fan Qiaohui1,Xu Di3,Wu Wangsuo2

Affiliation:

1. Key Laboratory of Petroleum Resources , Gansu Province/CAS Key Laboratory of Petroleum Resources Research , Institute of Geology and Geophysics, Chinese Academy of Sciences , Lanzhou 730000 , China

2. Radiochemistry Laboratory , School of Nuclear Science and Technology , Lanzhou University , Lanzhou 730000 , China

3. State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences , Nanjing 210008 , China , Tel.: +86-931-4960831,

Abstract

Abstract The sorption of Eu(III) on potassium feldspar (K-feldspar) was studied under various physicochemical conditions such as pH, temperature, counter ions and organic matter. The results showed that the sorption of Eu(III) on K-feldspar significantly increased with the increase of pH, and high Eu(III) concentration can inhibit such immobility to some extent. The presence of humic acid (HA) can increase the sorption of Eu(III) on K-feldspar in low pH range; while inhibit to a large extent under alkaline conditions. It is very interesting that at pH ~6.5, high ionic strength can promote the sorption of Eu(III) on K-feldspar in the presence of HA. In contrast, Eu(III) sorption was restricted obviously by NaCl in the absence of HA. The sorption procedure was involved with ion exchange and/or outer-sphere complexation as well as inner-sphere complexation. The presence of F and PO4 3− dramatically enhanced Eu(III) sorption on K-feldspar, whereas both SO4 2− and CO3 2− had negative effects on Eu(III) sorption. X-ray photoelectron spectroscopy analysis indicated that Eu(III) tended to form hydrolysates at high initial concentration (3×10−4 mol/L) and high temperature (338 K).

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3