Sorption of cesium on Tamusu clay in synthetic groundwater with high ionic strength

Author:

Zhang Han1,Dong Yang1,He Hanyi1,Li Honghui2,Zhao Shuaiwei2,Liu Jun1,Jia Meilan2,Yang Jijun1,Yang Yuanyou3,Liu Ning1,Liao Jiali3

Affiliation:

1. Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University , Chengdu 610064 , P.R. China

2. China Institute for Radiation Protection , Taiyuan 030006 , P.R. China

3. Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University , Chengdu 610064 , P.R. China , Tel.: +862885412613, Fax: +862885412374,

Abstract

Abstract The sorption behaviour of cesium on Tamusu clay was first investigated by batch experiments under synthetic groundwater and deionized water conditions. The results showed that the sorption could be well described by the pseud-second-order kinetic model or by the Freundlich isotherm model, and the Kd values decreased rapidly when temperature was greater than 328 K. However, the influence of initial cesium concentration, initial pH and Humic acid (HA) on the sorption behaviour in the synthetic groundwater exhibited a significant difference from those in the deionized water. In particular, the Kd value in the synthetic groundwater (5.47 mL/g) was much lower than that in the deionized water (58.97 mL/g). The SEM/EDS, effect of ion strength and pH-independent results in the synthetic groundwater indicated the cesium sorption on Tamusu clay was mainly involved in an ion exchange process. Additionally, the research reported in this work implies that the retardation of cesium on Tamusu clay was significantly lower than that on other clay rock in the world. The results suggest that the sorption behaviour of cesium or other nuclides on Tamusu clay should be evaluated in synthetic or actual groundwater but not in deionized water.

Funder

National Natural Science Foundation of China

National Fund of China for Fostering Talents in Basic Science

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3