Parametric investigations on proton conducting membrane by radiation induced grafting of 4-vinylpyridine onto poly(vinylidene fluoride) and phosphoric acid doping

Author:

Shamsaei E.1,Nasef M. M.,Saidi H.1,Yahaya A. H.2

Affiliation:

1. Institute of Hydrogen Economy (IHE), International Campus, Universiti Teknologi Malaysia, Jalan Semarak, 54100 Kuala Lumpur, Malaysia

2. Chemistry Department, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia

Abstract

Abstract Proton conducting membrane composed of grafted basic moiety doped with phosphoric acid (PA) was studied. The membrane denoted as PVDF-g-4-VP/PA was prepared by radiation induced grafting of 4-vinylpyridine (4-VP) onto poly(vinylidene fluoride) (PVDF) films followed by doping with PA. The effect of grafting conditions on the degree of grafting (G%) was investigated. The acid doping conditions (G%, time and PA concentration) were also investigated with respect to doping level. The grafted precursors and the acid doped membranes were characterized by means of Fourier transform infrared (FTIR), X-ray diffractometry (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and field emission scanning electron microscopy (FESEM). The membranes showed a thermal stability up to a temperature of ∼ 160 ℃, above which they undergo a multi-step degradation pattern due to decomposition of the protonated functions, poly(4VP) grafts and PVDF matrix, respectively. The proton conductivities of the membranes were found to increase with the increase in G% ( doping level) and the temperature with a maximum proton conductivity of 62 mS cm−1 achieved at 100 ℃ without any humidification. The results of the present study show that the prepared membrane has a potential to be proposed for operating polymer electrolyte membrane fuel cell above 80 ℃.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3