Characterization of Fe(III)-saturated montmorillonite and evaluation its sorption behavior for U(VI)

Author:

Lu Songhua,Tan Xiaoli1,Yu Shujun,Ren Xuemei1,Chen Changlun1

Affiliation:

1. Key Laboratory of Novel Thin Film Solar Cells, Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei, 230031, P.R. China

Abstract

Abstract Radioactive waste is usually sealed in steel canisters surrounded by a layer of compacted clay back-fill, and permanent buried in a deep geological repository. Unavoidably, the radionuclide contaminants can be released from repository and then sorbed onto the waste container corrosion products or the Fe-rich minerals. Herein, we characterized the Fe(III)-saturated montmorillonite (Fe(III)-MMT) by using Fourier transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and Brunauer–Emmett–Teller (BET), and found the changes of the surface incorporating Fe(III) and surface micropores. The sorption of U(VI) on Fe(III)-MMT and Na-montmorillonite (Na-MMT) was investigated by batch experiments. The larger surface area and cation exchange capacity, and the existence of Fe(III) (hydr)oxide phases in Fe(III)-MMT contributed greatly to its sorption capacity. In the whole pH range, the sorption of U(VI) on Fe(III)-MMT was higher than on Na-MMT, and the sorption was strongly depended on pH and ionic strength. The sorption isotherms were simulated well by the Langmuir and Freundlich models. The thermodynamic parameters (ΔH, ΔS and ΔG) calculated from the temperature dependent sorption isotherms indicated that the sorption of U(VI) on Fe(III)-MMT was an endothermic and spontaneous process. The observations suggest that the interactions between U(VI) and Fe(III)-MMT are important in controlling U(VI) retention. The phenomena need to be considered in risk assessment and reactive transport modeling.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3