A first principles study of energetics and electronic structural responses of uranium-based coordination polymers to Np incorporation

Author:

Saha Saumitra1,Becker Udo2

Affiliation:

1. Australian Research Council Centre of Excellence for Advanced Molecular Imaging, School of Physics , University of Melbourne , Melbourne, Victoria 3010 , Australia

2. Department of Earth and Environmental Sciences , University of Michigan , 2534 C.C. Little, 1100 N University Avenue , Ann Arbor, MI 48109 , USA

Abstract

Abstract Recently developed coordination polymers (CPs) and metal organic frameworks (MOFs) may find applications in areas such as catalysis, hydrogen storage, and heavy metal immobilization. Research on the potential application of actinide-based CPs (An-CP/MOFs) is not as advanced as transition metal-based MOFs. In order to modify their structures necessary for optimizing thermodynamic and electronic properties, here, we described how a specific topology of a particular actinide-based CP or MOF responds to the incorporation of other actinides considering their diverse coordination chemistry associated with the multiple valence states and charge-balancing mechanisms. In this study, we apply a recently developed DFT-based method to determine the relative stability of transuranium incorporated CPs in comparison to their uranium counterpart considering both solid and aqueous state sources and sinks to understand the mechanism and energetics of charge-balanced Np5+ incorporation into three uranium-based CPs. The calculated Np5++H+ incorporation energies for these CPs range from 0.33 to 0.52 eV, depending on the organic linker, when using the solid oxide Np source Np2O5 and U sink UO3. Incorporation energies of these CPs using aqueous sources and sinks increase to 2.85–3.14 eV. The thermodynamic and structural analysis in this study aides in determining, why certain MOF topologies and ligands are selective for some actinides and not for others. This means that once this method is extended across a variety of CPs with their respective linker molecules and different actinides, it can be used to identify certain CPs with certain organic ligands being specific for certain actinides. This information can be used to construct CPs for actinide separation. This is the first determination of the electronic structure (band structure, density of states) of these uranium- and transuranium-based CPs which may eventually lead to design CPs with certain optical or catalytic properties. While the reduction of the DFT-determined-bandgap goes from 3.1 eV to 2.4 eV when going from CP1 to CP3, showing the influence of the linker, Np6+ incorporation reduces the bandgap for CP1 and CP3, while increasing it for CP2. The coupled substitution of U6+→Np5++H+ reduces the bandgap significantly, but only for CP3.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3