Radiation protective characteristics of some selected tungstates

Author:

Sayyed Mohammed I.1,Lakshminarayana Gandham2,Kaçal Mustafa R.3,Akman Ferdi4

Affiliation:

1. University of Tabuk, Faculty of Science , Department of Physics , Tabuk , Saudi Arabia

2. Wireless and Photonic Networks Research Centre, Faculty of Engineering, Universiti Putra Malaysia , 43400 Serdang , Selangor , Malaysia

3. Giresun University, Arts and Sciences Faculty , Department of Physics , 28100 Giresun , Turkey

4. Bingöl University, Vocational School of Technical Sciences , Department of Electronic Communication Technology , 12000 Bingöl , Turkey , Phone: +904262160012-4020; Fax: +904262150788

Abstract

Abstract The mass attenuation coefficients (μ/ρ) of calcium tungstate, ammonium tungsten oxide, bismuth tungsten oxide, lithium tungstate, cadmium tungstate, magnesium tungstate, strontium tungsten oxide and sodium dodecatungstophosphate hydrate were measured at 14 photon energies in the energy range of 81–1333 keV using 22Na, 54Mn, 57Co, 60Co, 133Ba and 137Cs radioactive sources. The measured μ/ρ values were compared with those obtained from WinXCOM program and the differences between the experimental and theoretical values were very small. The bismuth tungsten oxide has the highest μ/ρ among the present samples in the studied energy region. From the μ/ρ values, we calculated the half value layer, tenth value layer and mean free path, and the results showed that ammonium tungsten oxide (which has the lowest density) and bismuth tungsten oxide (which has the highest density) possess the highest and lowest values of these three parameters, respectively. Additionally, from the incident and transmitted photon intensities, we calculated the radiation protection efficiency (RPE). The bismuth tungsten oxide was found to have RPE 98.53 % at 81 keV, which has the maximum value among the present samples and this suggested that bismuth tungsten oxide is the best to be chosen as the γ radiation shielding material candidate among the selected samples.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3