Dependence of UO2 surface morphology on processing history within a single synthetic route

Author:

Abbott Erik C.1,Brenkmann Alexandria1,Galbraith Craig1,Ong Joshua2,Schwerdt Ian J.1,Albrecht Brent D.2,Tasdizen Tolga2,McDonald IV Luther W.3

Affiliation:

1. Nuclear Engineering Program, Department of Civil and Environmental Engineering, University of Utah , 201 Presidents Circle , Salt Lake City, UT 84112 , USA

2. University of Utah, Scientific Computing and Imaging Institute , 72 S Central Campus Drive , Salt Lake City, UT 84112 , USA

3. Nuclear Engineering Program, Department of Civil and Environmental Engineering, University of Utah , 201 Presidents Circle, 110 Central Campus Drive, Suite 2000 , Salt Lake City, UT 84112 , USA , Phone: +801-581-7768

Abstract

Abstract This study aims to determine forensic signatures for processing history of UO2 based on modifications in intermediate materials within the uranyl peroxide route. Uranyl peroxide was calcined to multiple intermediate U-oxides including Am-UO3, α-UO3, and α-U3O8 during the production of UO2. The intermediate U-oxides were then reduced to α-UO2 via hydrogen reduction under identical conditions. Powder X-ray diffractometry (p-XRD) and X-ray photoelectron spectroscopy (XPS) were used to analyze powders of the intermediate U-oxides and resulting UO2 to evaluate the phase and purity of the freshly synthesized materials. All U-oxides were also analyzed via scanning electron microscopy (SEM) to determine the morphology of the freshly prepared powders. The microscopy images were subsequently analyzed using the Morphological Analysis for Materials (MAMA) version 2.1 software to quantitatively compare differences in the morphology of UO2 from each intermediate U-oxide. In addition, the microscopy images were analyzed using a machine learning model which was trained based on a VGG 16 architecture. Results show no differences in the XRD or XPS spectra of the UO2 produced from each intermediate. However, results from both the segmentation and machine learning proved that the morphology was quantifiably different. In addition, the morphology of UO2 was very similar, if not identical, to the intermediate material from which it was prepared, thus making quantitative morphological analysis a reliable forensic signature of processing history.

Funder

U.S. Department of Homeland Security

Defense Threat Reduction Agency

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3