Efficient decontamination of naturally occurring radionuclide from aqueous carbonate solutions by ion flotation process

Author:

Mahmoud Mamdoh R.1,Othman Sameh H.2

Affiliation:

1. Nuclear Chemistry Department , Hot Laboratories Center , Atomic Energy Authority , P.O. Box 13759 , Cairo , Egypt , Tel.: +201221925641

2. Egypt Second Research Reactor, Atomic Energy Authority , P.O. Box 13759 , Cairo , Egypt

Abstract

Abstract The present study evaluates the performance of ion flotation process for removal of uranyl tricarbonate complex, UO2(CO3)3 4−, which is the dominant species in many aqueous media particularly seawater, from aqueous solutions using cetyltrimethylammonium bromide, CTAB, as a cationic surfactant. Flotation of UO2(CO3)3 4− as a function in the solution pH is investigated in absence and in presence of carbonate. Removal percentage >99% is achieved in the pH range 8.5–11.5 in presence of 5×10−3 M carbonate. The influence of concentrations of ethanol (0.1–2% v/v) and CTAB (5×10−5–1.4×10−3 M) show that UO2(CO3)3 4− is efficiently removed at concentrations of 0.5–1.5% v/v and 4×10−4–1×10−3 M, respectively. Based on the obtained kinetic data, the flotation mechanism and the flotation rate are investigated using two different flotation models. Floatability of UO2(CO3)3 4− in presence of different cations (Ba2+, Ca2+, Mg2+ and Sr2+) and anions (NO3 , Br, Cl, SO4 2− and HPO4 2−) is studied. Except for Mg2+ and NO3 , the flotation efficiency of UO2(CO3)3 4− is significantly decreased at concentrations higher than 1×10−3 and 5×10−3 M of the studied cations and anions, respectively. Ion flotation process is efficiently applied for removal of uranium(VI), R%>98.5%, from seawater. Accordingly, ion flotation can be considered as a promising technique and thus its feasibility for removal and/or recovery of uranium(VI) from many aqueous environment.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3