Uranium oxide synthetic pathway discernment through thermal decomposition and morphological analysis

Author:

Schwerdt Ian J.1,Hawkins Casey G.1,Taylor Bryan1,Brenkmann Alexandria1,Martinson Sean1,McDonald IV Luther W.2

Affiliation:

1. University of Utah , Department of Civil and Environmental Engineering-Nuclear Engineering Program , 201 Presidents Circle, 110 Central Campus Dr. Suite 2000 , Salt Lake City, UT 84112 , USA

2. University of Utah , Department of Civil and Environmental Engineering-Nuclear Engineering Program , 201 Presidents Circle, 110 Central Campus Dr. Suite 2000 , Salt Lake City, UT 84112 , USA , Phone: +801-581-7768

Abstract

Abstract Many commercial processes exist for converting uranium from ore to the desired uranium compound for use in nuclear power or nuclear weapons. Accurately determining the processing history of the uranium ore concentrates (UOCs) and their calcination products, can greatly aid a nuclear forensics investigation of unknown or interdicted nuclear materials. In this study, two novel forensic signatures, based on nuclear materials synthesis, were pursued. Thermogravimetric analysis – mass spectrometry (TGA-MS) was utilized for its ability to discern UOCs based on mass changes and evolved gas species; while scanning electron microscopy (SEM), in conjunction with particle segmentation, was performed to identify microfeatures present in the calcination and reduction products (i.e. UO3, U3O8, and UO2) that are unique to the starting UOC. In total, five UOCs from common commercial processing routes including: ammonium diuranate (ADU), uranyl peroxide (UO4), sodium diuranate (SDU), uranyl hydroxide (UH), and ammonium uranyl carbonate (AUC), were synthesized from uranyl nitrate solutions. Samples of these materials were calcined in air at 400 °C and 800 °C. The 800 °C calcination product was subsequently reduced with hydrogen gas at 510 °C. The starting UOCs were investigated using TGA-MS; while SEM quantitative morphological analysis was used to identify signatures in the calcination products. Powder X-ray diffractometry (p-XRD) was used to identify the composition of each UOC and the subsequent calcination products. TGA-MS of the starting UOCs indicate temperature-dependent dehydration, volatilization, and reduction events that were unique to each material; thus making this a quantifiable signature of the initial material in the processing history. In addition, p-XRD, in conjunction with quantitative morphological analysis, was capable of discriminating calcination products of each processing history at the 99 % confidence level. Quantifying these nuclear material properties, enables nuclear forensics scientists to better identify the origin of unknown or interdicted nuclear materials.

Funder

U.S. Department of Homeland Security

Defense Threat Reduction Agency

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3