Uranium biosorption by immobilized active yeast cells entrapped in calcium-alginate-PVA- GO-crosslinked gel beads

Author:

Chen Can1,Hu Jun1,Wang Jianlong12

Affiliation:

1. Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET , Tsinghua University , Beijing 100084 , P.R. China

2. Beijing Key Laboratory of Radioactive Waste Treatment, Energy Science Building , Tsinghua University , Beijing 100084 , P.R. China

Abstract

Abstract A novel biosorbent, i. e. Saccharomyces cerevisiae entrapped in graphene oxide (GO), polyvinyl alcohol (PVA) and alginate and cross-linked in CaCl2- boric acid solution, was prepared, characterized and applied for U (VI) biosorption. The performance of U sorption and cations release (Na, K, Ca and Mg ions) was investigated under different contact time, initial uranium concentration and initial pH. Uranium sorption equilibrium basically achieved after 360 min. The kinetic data of U biosorption and Ca release were best described by the pseudo first-order equation. Both Langmuir and Freundlich models could fit the U sorption isotherm data. With increase of initial uranium (3.7 ~ 472.2 μmol/L) and sodium concentration (78.8 ~ 3911.7 μmol/L), the cations release ((Na + K)/2 + (Ca + Mg)) decreased from 116.9 to 30.1 μmol/g when the corresponding U sorption increased from 0.6 to 77.3 μmol/g. Initial solution pH at 3 was favorable for U sorption when pH ranged from 3 to 7. With increase of uranium concentration, ion exchange played a less role in U removal. The maximum U sorption capacity reached 142.1 μmol/g, calculated from the Langmuir model at initial pH 5. The O-containing functional group, such as carboxyl on the gel bead played an important role in U adsorption according to FTIR and XPS analysis. XPS analysis showed the existence of U (VI) and U (IV) on the surface of gel bead. Ion exchange, complexation and uranium reduction involved in uranium adsorption by the immobilized active dry yeast gel beads.

Funder

National Key Research and Development Program

National S&T Major Project

Program for Changjiang Scholars and Innovative Research Team in University

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3