Characterization of groundwater composition in Punjab state with special emphasis on uranium content, speciation and mobility

Author:

Kumar Ajay,Tripathi R. M.1,Rout Sabyasachi2,Mishra Manish K.2,Ravi P. M.2,Ghosh A. K.3

Affiliation:

1. Environmental Assessment Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India

2. Health Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India

3. Director, Health, Safety and Environment Group, Bhabha Atomic Research Centre, Trombay, Mumbai, India

Abstract

Abstract Groundwaters (borewell and handpump) were sampled from two districts (Bathinda and Mansa) of Punjab state and analyzed for their major ionic concentrations and uranium isotope compositions in order to assess the possible origins of the waters and water–rock interactions that occurred in the deep aquifer system. The major ionic concentrations of waters were plotted on a Piper diagram and grouped into four dominant hydrochemical facies as (Na+K)-SO4+Cl type (69% – 73%), (Ca+Mg)-SO4+Cl type (6% – 21%), (Ca+Mg)–HCO3 type (4% – 6%) and (Na+K)-HCO3 type (2% – 19%). It was observed that mobility of uranium in groundwater was very much influenced by TDS (total dissolved solids). To investigate the various mechanisms for deriving the elevated uranium concentrations in groundwater, 234U/238U activity ratios (ARs) were calculated using the determined activity levels of 234U and 238U. The mean ARs was found to be near unity (i.e. secular equilibrium) in the study regions confirmed that uranium in groundwaters was mainly resulted from its host/parent rocks through weathering processes. The concentration of HCO3 in ground water showed one order of magnitude higher than the total dissolved SiO2 indicates that carbonate weathering was the dominant process due to major water–rock interaction. The uranium speciation in groundwaters was investigated by an equilibrium model calculation using MEDUSA (make equilibrium diagrams using sophisticated algorithms) under the influence of redox conditions and complexant concentration. At the observed range of pH values, the predominant redox speciation of uranium was observed as hydroxo-carbonato complexes of (UO2)2(CO3)(OH)3 and hydroxyl complexes of UO2(OH)3 which might be caused for increasing the solubility of uranium. Due to very low concentration of phosphate in groundwater, its effects on U(VI)-aqueous speciation was negligible.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3