FLUKA simulation yields in a comparison with theoretical and experimental yields relevant to 89Zr produced in the 89Y(p,n) reaction

Author:

Kandil Shaban Abd-Allah12,Scherer Ulrich W.1

Affiliation:

1. Institute of Physical Chemistry and Radiochemistry , Hochschule Mannheim , Mannheim, Germany

2. Cyclotron Facility, Nuclear Research Centre , Atomic Energy Authority, B.O. 13759 , Cairo , Egypt

Abstract

Abstract The high importance of zirconium-89 (T1/2 = 78.41 h) is related to its applications in medical imaging. It can be produced at low-energy cyclotrons by the reaction 89Y(p,n)89Zr. There exist several publications on its production at low and intermediate energies but there is discrepancy with simulated data. In this study we considered the experimental parameters for four different types of yttrium foil targets reported in literature. The experimental parameters considered were the target geometry, beam profile, and angle of the target relative to the beam during irradiation. The Monte-Carlo code FLUKA was used to calculate production yields. The resulting values obtained by FLUKA from pencil beam or spread energy beam were compared to the theoretical yields obtained from the excitation function and the experimental ones. The FLUKA prediction for 89Z-yield reached ≈50 MBq/μA · h which agrees to a high extent with experimental and theoretical yields reported for the different targets.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. FLUKA simulations of radionuclide yields in oblique targets;Radiation Effects and Defects in Solids;2024-06-26

2. Testing the suitability of FLUKA and PHITS to predict the outcome of radionuclide production;Radiation Effects and Defects in Solids;2023-01-02

3. SRIM and FLUKA simulation for target design;Radiation Effects and Defects in Solids;2019-12-02

4. A novel educational approach: train the trainers;Radiation Effects and Defects in Solids;2019-12-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3