Redox behavior and solubility of plutonium under alkaline, reducing conditions

Author:

Tasi Agost1,Gaona Xavier1,Fellhauer David1,Böttle Melanie1,Rothe Jörg1,Dardenne Kathy1,Schild Dieter1,Grivé Mireia2,Colàs Elisenda2,Bruno Jordi2,Källström Klas3,Altmaier Marcus1,Geckeis Horst1

Affiliation:

1. Karlsruhe Institute of Technology, Institute for Nuclear Waste Disposal , P.O. Box 3640 , 76021 Karlsruhe , Germany

2. Amphos21 Consulting S.L., Passeig de Garcia i Fària, 49-51, 1°-1a , E08019 Barcelona , Spain

3. Svensk Kärnbränslehantering AB, avd. Avfall och Rivning, Box 250 , 101 24 Stockholm , Sweden

Abstract

Abstract The solubility and redox behavior of hydrous Pu(IV) oxide was comprehensively investigated by an experimental multi-method approach as a function of different redox conditions in 0.1 M NaCl solutions, allowing a detailed characterization of Pu(IV) and Pu(III) solubility and solid phase stability in these systems. Samples were prepared at ~3≤pHm≤~6 (pHm=–log m H + ) ${{\text{m}}_{{{\text{H}}^{\text{ + }}}}})$ and ~8≤pHm≤~13 at T=(22±2)°C under Ar atmosphere. No redox buffer was used in one set of samples, whereas mildly and strongly reducing redox conditions were buffered in two series with hydroquinone or SnCl2, respectively, resulting in (pe+pHm)=(9.5±1) and (2±1). XRD, XANES and EXAFS confirmed the predominance of Pu(IV) and the nanocrystalline character of the original, aged PuO2(ncr,hyd) solid phase used as a starting material. Rietveld analysis of the XRD data indicated an average crystal (domain) size of (4±1) nm with a mean cell parameter of (5.405±0.005) Å. The solubility constant of this solid phase was determined as log K ° s , 0 $^ * K{^\circ _{{\text{s}},0}}$ =–(58.1±0.3) combining solubility data in acidic conditions and redox speciation by solvent extraction and CE–SF–ICP–MS. This value is in excellent agreement with the current thermodynamic selection in the NEA-TDB. Synchrotron-based in-situ XRD, XANES and EXAFS indicate that PuO2(ncr,hyd) is the solid phase controlling the solubility of Pu in hydroquinone buffered samples. Under these redox conditions and ~8≤pHm≤~13, the solubility of Pu is very low (~10−10.5 m) and pH-independent. This is consistent with the solubility equilibrium PuO2(am,hyd)+2H2O(l)⇔ Pu(OH)4(aq). Although in-situ XRD unequivocally shows the predominance of PuO2 in Sn(II)-buffered systems, XANES analyses indicate a significant contribution of Pu(III) (30±5%) in the solid phases controlling the solubility of Pu at (pe+pHm)=(2±1). For this system, EXAFS shows a systematic shortening of Pu–O and Pu–Pu distances compared to the starting Pu material and hydroquinone-buffered systems. The solubility of Pu remains very low (~10−10.5 m) at pHm>9, but shows a very large scattering (~10−9–10−10.5 m) at pHm=8. Experimental observations collected in Sn(II) buffered systems can be explained by the co-existence of both PuO2(ncr,hyd) and Pu(OH)3(am) solid phases, but also by assuming the formation of a sub-stoichiometric PuO2−x (s) phase. This extensive study provides robust upper limits for Pu solubility in alkaline, mildly to strongly reducing conditions relevant in the context of nuclear waste disposal. The potential role of Pu(III) in the solid phases controlling the solubility of Pu under these conditions is analysed and discussed in view of the current NEA-TDB thermodynamic selection, which supports the predominance of PuO2(am,hyd) and constrains the formation of Pu(OH)3(am) at pHm>8 outside the stability field of water.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

Reference69 articles.

1. SKB: Safety Analysis SFR 1. Long-Term Safety (2008), Svensk Kärnbränslehantering AB, Stockholm, Sweden.

2. Neck, V., Altmaier, M., Fanghänel, T.: Solubility of plutonium hydroxides/hydrous oxides under reducing conditions and in the presence of oxygen. C. R. Chim. 10, 959 (2007).10.1016/j.crci.2007.02.011

3. Grenthe, I., Fuger, J., Lemire, R. J., Muller, A. B., Cregu, C. N., Wanner, H.: Chemical Thermodynamics, Vol. 1. Chemical Thermodynamics of Uranium (1992), OECD, NEA-TDB, Elsevier, North Holland, Amsterdam.

4. Lemire, R. J., Fuger, J., Nitsche, H., Potter, P. E., Rand, M. H., Rydberg, J., Spahiu, K., Sullivan, J. C., Ullman, W. J., Vitorge, P., Wanner, H.: Chemical Thermodynamics, Vol. 4. Chemical Thermodynamics of Neptunium and Plutonium (2001), OECD, NEA-TDB, Elsevier, North Holland, Amsterdam.

5. Guillaumont, R., Fanghänel, T., Neck, V., Fuger, J., Palmer, D. A., Grenthe, I., Rand, M. H.: Chemical Thermodynamics, Vol. 5. Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium (2003), OECD, NEA-TDB, Elsevier, North Holland, Amsterdam.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3