Affiliation:
1. Brno University of Technology , CEITEC - Central European Institute of Technology , Brno 612 00 , Czech Republic
Abstract
Abstract
The article is concerned with systems of fractional discrete equations
Δ
α
x
(
n
+
1
)
=
F
n
(
n
,
x
(
n
)
,
x
(
n
−
1
)
,
…
,
x
(
n
0
)
)
,
n
=
n
0
,
n
0
+
1
,
…
,
{\Delta }^{\alpha }x\left(n+1)={F}_{n}\left(n,x\left(n),x\left(n-1),\ldots ,x\left({n}_{0})),\hspace{1em}n={n}_{0},{n}_{0}+1,\ldots ,
where
n
0
∈
Z
{n}_{0}\in {\mathbb{Z}}
,
n
n
is an independent variable,
Δ
α
{\Delta }^{\alpha }
is an
α
\alpha
-order fractional difference,
α
∈
R
\alpha \in {\mathbb{R}}
,
F
n
:
{
n
}
×
R
n
−
n
0
+
1
→
R
s
{F}_{n}:\left\{n\right\}\times {{\mathbb{R}}}^{n-{n}_{0}+1}\to {{\mathbb{R}}}^{s}
,
s
⩾
1
s\geqslant 1
is a fixed integer, and
x
:
{
n
0
,
n
0
+
1
,
…
}
→
R
s
x:\left\{{n}_{0},{n}_{0}+1,\ldots \right\}\to {{\mathbb{R}}}^{s}
is a dependent (unknown) variable. A retract principle is used to prove the existence of solutions with graphs remaining in a given domain for every
n
⩾
n
0
n\geqslant {n}_{0}
, which then serves as a basis for further proving the existence of bounded solutions to a linear nonhomogeneous system of discrete equations
Δ
α
x
(
n
+
1
)
=
A
(
n
)
x
(
n
)
+
δ
(
n
)
,
n
=
n
0
,
n
0
+
1
,
…
,
{\Delta }^{\alpha }x\left(n+1)=A\left(n)x\left(n)+\delta \left(n),\hspace{1em}n={n}_{0},{n}_{0}+1,\ldots ,
where
A
(
n
)
A\left(n)
is a square matrix and
δ
(
n
)
\delta \left(n)
is a vector function. Illustrative examples accompany the statements derived, possible generalizations are discussed, and open problems for future research are formulated as well.
Reference19 articles.
1. P. T. Anh, A. Babiarz, A. Czornik, M. Niezabitowski, and S. Siegmund, Asymptotic properties of discrete linear fractional equations, Bull. Pol. Ac.: Tech. 67 (2019), no. 4, 749–759.
2. A. Babiarz, and J. Klamka, Controllability of fractional linear switched systems with delays for the fixed sequence, 11th Asian Control Conference (ASCC) Gold Coast Convention Centre, Australia December 17–20, 2017, pp. 1894–1899.
3. J. Baštinec, J. Diblík, and S. Pinelas, Initial data generating bounded solutions of a system of two linear discrete equations, AIP Conf. Proc. 2293 (2020), 340010–1–340010-4, https://doi.org/10.1063/5.0026616.
4. J. Baštinec, J. Diblík, S. Pinelas, and J. Vala, Determining the initial data generating solutions with prescribed behaviour of a triangular system of linear discrete equations, Appl. Math. Comput. 425 (2022), 126533, 1–18, https://doi.org/10.1016/j.amc.2021.126533.
5. K. Borsuk, Theory of Retracts, Monografie Matematyczne, vol. 44, Państwowe Wydawnictwo Naukowe, Warsaw, 1967.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献