On the planar Kirchhoff-type problem involving supercritical exponential growth

Author:

Zhang Limin1,Tang Xianhua1,Chen Peng2

Affiliation:

1. School of Mathematics and Statistics, HNP-LAMA, Central South University , Changsha , Hunan 410083 , P. R. China

2. Three Gorges Mathematical Research Center, College of Science, China Three Gorges University , Yichang , Hubei 443002 , P. R. China

Abstract

Abstract This article is concerned with the following nonlinear supercritical elliptic problem: M ( u 2 2 ) Δ u = f ( x , u ) , in B 1 ( 0 ) , u = 0 , on B 1 ( 0 ) , \left\{\begin{array}{ll}-M(\Vert \nabla u{\Vert }_{2}^{2})\Delta u=f\left(x,u),& \hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}{B}_{1}\left(0),\\ u=0,& \hspace{0.1em}\text{on}\hspace{0.1em}\hspace{0.33em}\partial {B}_{1}\left(0),\end{array}\right. where B 1 ( 0 ) {B}_{1}\left(0) is the unit ball in R 2 {{\mathbb{R}}}^{2} , M : R + R + M:{{\mathbb{R}}}^{+}\to {{\mathbb{R}}}^{+} is a Kirchhoff function, and f ( x , t ) f\left(x,t) has supercritical exponential growth on t t , which behaves as exp [ ( β 0 + x α ) t 2 ] \exp {[}({\beta }_{0}+| x\hspace{-0.25em}{| }^{\alpha }){t}^{2}] and exp ( β 0 t 2 + x α ) \exp ({\beta }_{0}{t}^{2+| x{| }^{\alpha }}) with β 0 {\beta }_{0} , α > 0 \alpha \gt 0 . Based on a deep analysis and some detailed estimate, we obtain Nehari-type ground state solutions for the above problem by variational method. Moreover, we can determine a fine upper bound for the minimax level under weaker assumption on liminf t t f ( x , t ) exp [ ( β 0 + x α ) t 2 ] {\mathrm{liminf}}_{t\to \infty }\frac{tf\left(x,t)}{\exp {[}({\beta }_{0}+| \hspace{-0.25em}x\hspace{-0.25em}{| }^{\alpha }){t}^{2}]} and liminf t t f ( x , t ) exp ( β 0 t 2 + x α ) {\mathrm{liminf}}_{t\to \infty }\frac{tf\left(x,t)}{\exp ({\beta }_{0}{t}^{2+| x{| }^{\alpha }})} , respectively. Our results generalize and improve the ones in G. M. Figueiredo and U. B. Severo (Ground state solution for a Kirchhoff problem with exponential critical growth, Milan J. Math. 84 (2016), no. 1, 23–39.) and Q. A. Ngó and V. H. Nguyen (Supercritical Moser-Trudinger inequalities and related elliptic problems, Calc. Var. Partial Differ. Equ. 59 (2020), no. 2, Paper No. 69, 30.) for M ( t ) = 1 M(t)=1 . In particular, if the weighted term x α | x\hspace{-0.25em}{| }^{\alpha } is vanishing, we can obtain the ones in S. T. Chen, X. H. Tang, and J. Y. Wei (2021) (Improved results on planar Kirchhoff-type elliptic problems with critical exponential growth, Z. Angew. Math. Phys. 72 (2021), no. 1, Paper No. 38, Theorem 1.3 and Theorem 1.4) immediately.

Publisher

Walter de Gruyter GmbH

Subject

Analysis

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3