Affiliation:
1. School of Mathematics and Statistics, HNP-LAMA, Central South University , Changsha , Hunan 410083 , P. R. China
2. Three Gorges Mathematical Research Center, College of Science, China Three Gorges University , Yichang , Hubei 443002 , P. R. China
Abstract
Abstract
This article is concerned with the following nonlinear supercritical elliptic problem:
−
M
(
‖
∇
u
‖
2
2
)
Δ
u
=
f
(
x
,
u
)
,
in
B
1
(
0
)
,
u
=
0
,
on
∂
B
1
(
0
)
,
\left\{\begin{array}{ll}-M(\Vert \nabla u{\Vert }_{2}^{2})\Delta u=f\left(x,u),& \hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}{B}_{1}\left(0),\\ u=0,& \hspace{0.1em}\text{on}\hspace{0.1em}\hspace{0.33em}\partial {B}_{1}\left(0),\end{array}\right.
where
B
1
(
0
)
{B}_{1}\left(0)
is the unit ball in
R
2
{{\mathbb{R}}}^{2}
,
M
:
R
+
→
R
+
M:{{\mathbb{R}}}^{+}\to {{\mathbb{R}}}^{+}
is a Kirchhoff function, and
f
(
x
,
t
)
f\left(x,t)
has supercritical exponential growth on
t
t
, which behaves as
exp
[
(
β
0
+
∣
x
∣
α
)
t
2
]
\exp {[}({\beta }_{0}+| x\hspace{-0.25em}{| }^{\alpha }){t}^{2}]
and
exp
(
β
0
t
2
+
∣
x
∣
α
)
\exp ({\beta }_{0}{t}^{2+| x{| }^{\alpha }})
with
β
0
{\beta }_{0}
,
α
>
0
\alpha \gt 0
. Based on a deep analysis and some detailed estimate, we obtain Nehari-type ground state solutions for the above problem by variational method. Moreover, we can determine a fine upper bound for the minimax level under weaker assumption on
liminf
t
→
∞
t
f
(
x
,
t
)
exp
[
(
β
0
+
∣
x
∣
α
)
t
2
]
{\mathrm{liminf}}_{t\to \infty }\frac{tf\left(x,t)}{\exp {[}({\beta }_{0}+| \hspace{-0.25em}x\hspace{-0.25em}{| }^{\alpha }){t}^{2}]}
and
liminf
t
→
∞
t
f
(
x
,
t
)
exp
(
β
0
t
2
+
∣
x
∣
α
)
{\mathrm{liminf}}_{t\to \infty }\frac{tf\left(x,t)}{\exp ({\beta }_{0}{t}^{2+| x{| }^{\alpha }})}
, respectively. Our results generalize and improve the ones in G. M. Figueiredo and U. B. Severo (Ground state solution for a Kirchhoff problem with exponential critical growth, Milan J. Math. 84 (2016), no. 1, 23–39.) and Q. A. Ngó and V. H. Nguyen (Supercritical Moser-Trudinger inequalities and related elliptic problems, Calc. Var. Partial Differ. Equ. 59 (2020), no. 2, Paper No. 69, 30.) for
M
(
t
)
=
1
M(t)=1
. In particular, if the weighted term
∣
x
∣
α
| x\hspace{-0.25em}{| }^{\alpha }
is vanishing, we can obtain the ones in S. T. Chen, X. H. Tang, and J. Y. Wei (2021) (Improved results on planar Kirchhoff-type elliptic problems with critical exponential growth, Z. Angew. Math. Phys. 72 (2021), no. 1, Paper No. 38, Theorem 1.3 and Theorem 1.4) immediately.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献