On isolated singularities of Kirchhoff equations

Author:

Chen Huyuan1,Fall Mouhamed Moustapha2,Zhang Binling3

Affiliation:

1. Department of Mathematics , Jiangxi Normal University , Nanchang , Jiangxi 330022 , P.R. China

2. African Institute for Mathematical Sciences Senega, KM2 Route de Joal Mbour , BP 1418 , Mbour , Senegal

3. College of Mathematics and Systems Science , Shandong University of Science and Technology , Qingdao , 266590 , P.R. China

Abstract

Abstract In this note, we study isolated singular positive solutions of Kirchhoff equation M θ ( u ) ( Δ ) u = u p i n Ω { 0 } , u = 0 o n Ω , $$\begin{array}{} \displaystyle M_\theta(u)(-{\it\Delta}) u =u^p \quad{\rm in}\quad {\it\Omega}\setminus \{0\},\qquad u=0\quad {\rm on}\quad \partial {\it\Omega}, \end{array}$$ where p > 1, θ ∈ ℝ, Mθ (u) = θ + ∫ Ω |∇ u| dx, Ω is a bounded smooth domain containing the origin in ℝ N with N ≥ 2. In the subcritical case: 1 < p < N N 2 $\begin{array}{} \displaystyle \frac{N}{N-2} \end{array}$ if N ≥ 3, 1 < p < + ∞ if N = 2, we employee the Schauder fixed point theorem to derive a sequence of positive isolated singular solutions for the above equation such that Mθ (u) > 0. To estimate Mθ (u), we make use of the rearrangement argument. Furthermore, we obtain a sequence of isolated singular solutions such that Mθ (u) < 0, by analyzing relationship between the parameter λ and the unique solution uλ of Δ u + λ u p = k δ 0 i n B 1 ( 0 ) , u = 0 o n B 1 ( 0 ) . $$\begin{array}{} \displaystyle -{\it\Delta} u+\lambda u^p=k\delta_0\quad{\rm in}\quad B_1(0),\qquad u=0\quad {\rm on}\quad \partial B_1(0). \end{array}$$ In the supercritical case: N N 2 $\begin{array}{} \displaystyle \frac{N}{N-2} \end{array}$ p < N + 2 N 2 $\begin{array}{} \displaystyle \frac{N+2}{N-2} \end{array}$ with N ≥ 3, we obtain two isolated singular solutions ui with i = 1, 2 such that Mθ (ui ) > 0 under other assumptions.

Publisher

Walter de Gruyter GmbH

Subject

Analysis

Reference41 articles.

1. Ph. Bénilan, H. Brézis, Nonlinear problems related to the Thomas-Fermi equation, J. Evolution Eq. 3, 673—770 (2003).

2. M. Bidautvéron, L. Vivier, An elliptic semilinear equation with source term involving boundary measures: the subcritical case, Revista Matematica Iberoamericana 16, 477—513 (2000).

3. H. Brézis, Some variational problems of the Thomas-Fermi type. Variational inequalities and complementarity problems, Proc. Internat. School, Erice, Wiley, Chichester 53—73 (1980).

4. H. Brézis, P. Lions, A note on isolated singularities for linear elliptic equations, in Mathematical Analysis and Applications, Acad. Press 263—266 (1981).

5. M. F. Bidaut-Véron, N. Hung, L. Véron, Quasilinear Lane-Emden equations with absorption and measure data, J. Math. Pures Appl. 102, 315—337 (2014).

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3