Affiliation:
1. Department of Mathematics , Jiangxi Normal University , Nanchang , Jiangxi 330022 , P.R. China
2. African Institute for Mathematical Sciences Senega, KM2 Route de Joal Mbour , BP 1418 , Mbour , Senegal
3. College of Mathematics and Systems Science , Shandong University of Science and Technology , Qingdao , 266590 , P.R. China
Abstract
Abstract
In this note, we study isolated singular positive solutions of Kirchhoff equation
M
θ
(
u
)
(
−
Δ
)
u
=
u
p
i
n
Ω
∖
{
0
}
,
u
=
0
o
n
∂
Ω
,
$$\begin{array}{}
\displaystyle
M_\theta(u)(-{\it\Delta}) u =u^p \quad{\rm in}\quad {\it\Omega}\setminus \{0\},\qquad u=0\quad {\rm on}\quad \partial {\it\Omega},
\end{array}$$
where p > 1, θ ∈ ℝ, Mθ
(u) = θ + ∫
Ω
|∇ u| dx, Ω is a bounded smooth domain containing the origin in ℝ
N
with N ≥ 2.
In the subcritical case: 1 < p <
N
N
−
2
$\begin{array}{}
\displaystyle
\frac{N}{N-2}
\end{array}$
if N ≥ 3, 1 < p < + ∞ if N = 2, we employee the Schauder fixed point theorem to derive a sequence of positive isolated singular solutions for the above equation such that Mθ
(u) > 0. To estimate Mθ
(u), we make use of the rearrangement argument. Furthermore, we obtain a sequence of isolated singular solutions such that Mθ
(u) < 0, by analyzing relationship between the parameter λ and the unique solution uλ
of
−
Δ
u
+
λ
u
p
=
k
δ
0
i
n
B
1
(
0
)
,
u
=
0
o
n
∂
B
1
(
0
)
.
$$\begin{array}{}
\displaystyle
-{\it\Delta} u+\lambda u^p=k\delta_0\quad{\rm in}\quad B_1(0),\qquad u=0\quad {\rm on}\quad \partial B_1(0).
\end{array}$$
In the supercritical case:
N
N
−
2
$\begin{array}{}
\displaystyle
\frac{N}{N-2}
\end{array}$
≤ p <
N
+
2
N
−
2
$\begin{array}{}
\displaystyle
\frac{N+2}{N-2}
\end{array}$
with N ≥ 3, we obtain two isolated singular solutions ui
with i = 1, 2 such that Mθ
(ui
) > 0 under other assumptions.
Reference41 articles.
1. Ph. Bénilan, H. Brézis, Nonlinear problems related to the Thomas-Fermi equation, J. Evolution Eq. 3, 673—770 (2003).
2. M. Bidautvéron, L. Vivier, An elliptic semilinear equation with source term involving boundary measures: the subcritical case, Revista Matematica Iberoamericana 16, 477—513 (2000).
3. H. Brézis, Some variational problems of the Thomas-Fermi type. Variational inequalities and complementarity problems, Proc. Internat. School, Erice, Wiley, Chichester 53—73 (1980).
4. H. Brézis, P. Lions, A note on isolated singularities for linear elliptic equations, in Mathematical Analysis and Applications, Acad. Press 263—266 (1981).
5. M. F. Bidaut-Véron, N. Hung, L. Véron, Quasilinear Lane-Emden equations with absorption and measure data, J. Math. Pures Appl. 102, 315—337 (2014).
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献