Homoclinics for strongly indefinite almost periodic second order Hamiltonian systems
Author:
Affiliation:
1. Department of Mathematics , Morgan State University , 1700 E. Cold Spring Lane , Baltimore , MD 21251 , USA ; and RUDN University, 6 Miklukho-Maklay St., Moscow 117198, Russia
Abstract
Funder
Ministry of Education and Science of the Russian Federation
Publisher
Walter de Gruyter GmbH
Subject
Analysis
Reference23 articles.
1. F. Alessio, M. L. Bertotti and P. Montecchiari, Multibump solutions to possibly degenerate equilibria for almost periodic Lagrangian systems, Z. Angew. Math. Phys. 50 (1999), 860–891.
2. F. Alessio and M. Calanchi, Homoclinic-type solutions for an almost periodic semilinear elliptic equation on ℝ n {\mathbb{R}^{n}} , Rend. Semin. Mat. Univ. Padova 97 (1997), 89–111.
3. G. Arioli and A. Szulkin, Homoclinic solutions for a class of systems of second order differential equations, Topol. Methods Nonlinear Anal. 6 (1995), 189–197.
4. H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2011.
5. V. Coti Zelatti, P. Montecchiari and M. Nolasco, Multibump homoclinic solutions for a class of second order, almost periodic Hamiltonian systems, NoDEA Nonlinear Differential Equations Appl. 4 (1997), 77–99.
Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. STANDING WAVE SOLUTIONS FOR THE GENERALIZED MODIFIED CHERN-SIMONS-SCHRÖDINGER SYSTEM;Journal of Applied Analysis & Computation;2022
2. Homoclinic orbits for first-order Hamiltonian system with local super-quadratic growth condition;Complex Variables and Elliptic Equations;2021-01-06
3. New results on the existence of ground state solutions for generalized quasilinear Schrödinger equations coupled with the Chern–Simons gauge theory;Electronic Journal of Qualitative Theory of Differential Equations;2021
4. Infinitely homoclinic solutions in discrete hamiltonian systems without coercive conditions;Journal of Numerical Analysis and Approximation Theory;2020-09-08
5. Ground states and multiple solutions for Hamiltonian elliptic system with gradient term;Advances in Nonlinear Analysis;2020-07-30
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3