Eigenvalues for a class of singular problems involving p(x)-Biharmonic operator and q(x)-Hardy potential

Author:

Khalil Abdelouahed El1,Laghzal Mohamed2,Alaoui My Driss Morchid3,Touzani Abdelfattah2

Affiliation:

1. Department of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 90950, 11623, Riyadh, KSA

2. Laboratory LAMA, Department of Mathematics, Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, P.O. Box 1796, Atlas Fez, Morocco

3. Department of Mathematics Moulay Ismail University of Meknes Faculty of Sciences and Technologies BP 509, Boutalamine, 52000, Errachidia, Morocco

Abstract

Abstract In this paper, we consider the nonlinear eigenvalue problem: $$\begin{array}{} \displaystyle \begin{cases} {\it\Delta}(|{\it\Delta} u|^{p(x)-2}{\it\Delta} u)= \lambda \frac{|u|^{q(x)-2}u}{{\delta(x)}^{2q(x)}} \;\; \mbox{in}\;\; {\it\Omega}, \\ u\in W_0^{2,p(x)}({\it\Omega}), \end{cases} \end{array}$$ where Ω is a regular bounded domain of ℝN, δ(x) = dist(x, ∂Ω) the distance function from the boundary ∂Ω, λ is a positive real number, and functions p(⋅), q(⋅) are supposed to be continuous on Ω satisfying $$\begin{array}{} \displaystyle 1 \lt \min_{\overline{{\it\Omega} }}\,q\leq \max_{\overline{{\it\Omega}}}\,q \lt \min_{\overline{{\it\Omega} }}\,p \leq \max_{\overline{{\it\Omega}}}\,p \lt \frac{N}{2} \mbox{ and } \max_{\overline{{\it\Omega}}}\,q \lt p_2^*:= \frac{Np(x)}{N-2p(x)} \end{array}$$ for any xΩ. We prove the existence of at least one non-decreasing sequence of positive eigenvalues. Moreover, we prove that sup Λ = +∞, where Λ is the spectrum of the problem. Furthermore, we give a proof of positivity of inf Λ > 0 provided that Hardy-Rellich inequality holds.

Publisher

Walter de Gruyter GmbH

Subject

Analysis

Reference46 articles.

1. Solutions for Neumann boundary value problems involving p(x)-Laplace operators;Nonlinear Anal.,2008

2. Explicit constants for Rellich inequalities in Lp(Ω);Math. Z.,1998

3. Averaging of functionals of the calculus of variations and elasticity theory (in Russian);Izv. Akad. Nauk SSSR Ser. Mat.,1986

4. A simple approach to Hardy inequalities (in Russian);Mat. Zametki,2000

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3