Nests of limit cycles in quadratic systems

Author:

Zegeling André1

Affiliation:

1. College of Mathematics and Statistics, Guangxi Normal University , Guilin , Guangxi 541004 , China

Abstract

Abstract We give a proof of the distribution property of limit cycles in so-called quadratic systems. We prove that the possible limit cycle distributions are either ( n , 0 ) \left(n,0) or ( n , 1 ) \left(n,1) (where n { 0 } N n\in \left\{0\right\}\cup {\mathbb{N}} ). The aim of this article is to simplify and fill gaps in the original proof by Zhang (On the distribution and number of limit cycles for quadratic systems with two foci, Qual. Theory Dyn. Sys. 3 (2002), 437–463). The sixteenth Hilbert problem asks for an upper bound for the number of limit cycles in polynomial systems H ( n ) H\left(n) , where n n is the maximum degree of the polynomial defining the system. A consequence of the distribution property is that it reduces the study of H ( 2 ) H\left(2) to the study of the maximum number of limit cycles surrounding one singularity.

Publisher

Walter de Gruyter GmbH

Reference22 articles.

1. J. C. Artés, J. Llibre, D. Schlomiuk, and N. Vulpe, Geometric Configurations of Singularities of Planar Polynomial Differential Systems, Birkhäuser, 2021, 711 pages.

2. L. Chen and M. S. Wang, Relative position and number of limit cycles of a quadratic differential system, Acta Math. Sinica 22 (1979), 751–758. (Chinese)

3. L. A. Cherkas, Cycles of the equation y′=Q2(x,y)∕P2(x,y), Differnetsial’nye Uravneniya 9 (1973), 1432–1437. (Russian), Differential Equations 9 (1973), 1099–1103.

4. L. A. Cherkas, Bifurcation of limit cycles of a quadratic system with variation of the parameter rotating the field, Differnetsial’nye Uravneniya 17 (1981), 2002–2016 (Russian), Differential Equations 17 (1981), 1265–1276.

5. B. Coll and J. Llibre, Limit cycles for a quadratic system with an invariant straight lineand some evolution of phase portraits, Coll. Math. Soc. J. Bolyai 53 (1988), 111–123, Qual. Theory of Diff. Eq.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3