Intrinsic decay rates for the energy of a nonlinear viscoelastic equation modeling the vibrations of thin rods with variable density

Author:

Cavalcanti Marcelo M.1,Domingos Cavalcanti Valéria N.1,Lasiecka Irena2,Webler Claudete M.1

Affiliation:

1. 1Department of Mathematics, State University of Maringá, Maringá - PR, 87020-900, Brazil

2. 2Department of Mathematical Sciences, University of Memphis, Memphis, TN 38152, USA; and IBS, Polish Academy of Sciences, Warsaw, Poland

Abstract

AbstractWe consider the long-time behavior of a nonlinear PDE with a memory term which can be recast in the abstract form$\frac{d}{dt}\rho(u_{t})+Au_{tt}+\gamma A^{\theta}u_{t}+Au-\int_{0}^{t}g(s)Au(t% -s)=0,$where A is a self-adjoint, positive definite operator acting on a Hilbert space H, ${\rho(s)}$ is a continuous, monotone increasing function, and the relaxation kernel ${g(s)}$ is a continuous, decreasing function in ${L_{1}(\mathbb{R}_{+})}$ with ${g(0)>0}$. Of particular interest is the case when ${A=-\Delta}$ with appropriate boundary conditions and ${\rho(s)=|s|^{\rho}s}$. This model arises in the context of solid mechanics accounting for variable density of the material. While finite energy solutions of the underlying PDE solutions exhibit exponential decay rates when strong damping is active (${\gamma>0,\theta=1}$), this uniform decay is no longer valid (by spectral analysis arguments) for dynamics subjected to frictional damping only, say, ${\theta=0}$ and ${g=0}$. In the absence of mechanical damping (${\gamma=0}$), the linearized version of the model reduces to a Volterra equation generated by bounded generators and, hence, it is exponentially stable for exponentially decaying kernels. The aim of the paper is to study intrinsic decays for the energy of the nonlinear model accounting for large classes of relaxation kernels described by the inequality ${g^{\prime}+H(g)\leq 0}$ with H convex and subject to the assumptions specified in (1.13) (a general framework introduced first in [1] in the context of linear second-order evolution equations with memory). In the context of frictional damping, such a framework was introduced earlier in [15], where it was shown that the decay rates of second-order evolution equations with frictional damping can be described by solutions of an ODE driven by a suitable convex function H which captures the behavior at the origin of the dissipation. The present paper extends this analysis to nonlinear equations with viscoelasticity. It is shown that the decay rates of the energy are intrinsically described by the solution of the dissipative ODE${S_{t}+c_{1}H(c_{2}S)=0}$with given intrinsic constants ${c_{1},c_{2}>0}$. The results obtained are sharp and they improve (by introducing a novel methodology) previous results in the literature (see [20, 19, 21, 6]) with respect to (i) the criticality of the nonlinear exponent ρ and (ii) the generality of the relaxation kernel.

Funder

CNPq

NSF

AFOSR

Publisher

Walter de Gruyter GmbH

Subject

Analysis

Reference56 articles.

1. Asymptotic decay for some differential systems with fading memory;Appl. Anal.,2002

2. Intrinsic decay rate estimates for the wave equation with competing viscoelastic and frictional dissipative effects;Discrete Contin. Dyn. Syst. Ser. B,2014

3. A general decay result for a viscoelastic equation in the presence of past and finite history memories;Nonlinear Anal. Real World Appl.,2012

4. Controllability and stabilizability theory for linear partial differential equations: Recent progress and open questions;SIAM Rev.,1978

5. Uniform boundary stabilization of semilinear wave equation with nonlinear boundary damping;Differential Integral Equations,1993

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3