Affiliation:
1. Dipartimento di Matematica e Applicazioni, Università degli Studi “Federico II” di Napoli, via Cinthia, 80126Napoli, Italy
Abstract
AbstractIn this work we study the following fractional scalar field equation:\left\{\begin{aligned} \displaystyle(-\Delta)^{s}u&\displaystyle=g^{\prime}(u)%
\quad\mbox{in }\mathbb{R}^{N},\\
\displaystyle u&\displaystyle>0,\end{aligned}\right.where {N\geq 2}, {s\in(0,1)}, {(-\Delta)^{s}} is the fractional Laplacian and the nonlinearity {g\in C^{2}(\mathbb{R})} is such that {g^{\prime\prime}(0)=0}.
By using variational methods, we prove the existence of a positive solution which is spherically symmetric and decreasing in {r=|x|}.
Reference60 articles.
1. Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity;J. Eur. Math. Soc. (JEMS),2005
2. Fractional quantum mechanics and Lévy path integrals;Phys. Lett. A,2000
3. Nonlinear scalar field equations. I: Existence of a ground state;Arch. Ration. Mech. Anal.,1983
4. On fractional Schrödinger equations in ℝN{\mathbb{R}^{N}} without the Ambrosetti–Rabinowitz condition;Preprint,2012
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献